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Abstract

In this paper an efficient algorithm for the synthesis and exact mini-
mization of ESCT(Exclusive or Sum of Complex Terms) expressions for
Boolean functions of at most six variables is proposed. This kind of log-
ical expressions can be mapped to a special cellular architecture, called
Reversible Wave Cascade Architecture. This topology is useful, because
it has been proved to be reversible and moreover it may help in the design
of quantum circuits. The proposed algorithm is the first one to give so-
lution to the problem of finding minimal ESCT expressions for switching
functions of up to six input variables.

1 Introduction

For many years, logic synthesis was based on AND, OR and NOT gates. How-
ever, for arithmetic, error correcting and telecommunication applications, the
use of XOR (eXclusive OR) gates can reduce the complexity of logic circuits.
The most general (and most powerful) AND-XOR expression is the ”Exclusive
or Sum Of Products” (ESOP) expression where a function is represented as
the XOR sum of logical products (Logical ANDs of variable literals) [1]. The
natural evolution to these expressions are the ”Exclusive or Sum of Complex
Terms” (ESCT) expressions where every term may additionally use the logical
OR and XOR operations.

An ESCT expression of a Boolean function is a XOR sum of terms. These
terms are similar to logical products, but the Boolean function between the
variable literals is not restricted only to logical AND but also includes log-
ical OR and XOR. In other words, an ESCT expression of m terms, for a
single-output Boolean function of n input variables, has the following form:
Q =

∑i≤m
i=1 ⊕Gi

n(xn, Gi
n−1(xn−1, . . . G

i
1(x1, 0))), where Gi

j is an arbitrary single-
output Boolean function of 2 input variables. Each Gi

n(xn, Gi
n−1(xn−1, . . . , G

i
1(x1, 0)))

term is called a complex term. A more formal definition is given in section 2.
This kind of expressions have been introduced by K. K. Maitra [2] in 1962,

while studying cellular architectures. He proposed a special kind of those, which
we now call the Reversible Wave Cascade (Fig. 1). An ESCT expression is an
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Figure 1: Reversible wave cascade architecture

expression of a Boolean function suited for direct mapping to such an architec-
ture.

Example 1 Let f(x1, x2, x3, x4) be a single-output 4-variable Boolean func-
tion. An ESCT expression of f is:(x1x2 ⊕ x3)x̄4 ⊕(x̄1x2x3 ⊕ x4) ⊕((x1 ⊕
x2)x3x̄4). This ESCT expression can be directly mapped to the Reversible Wave
Cascade of Fig 2.

It has been proved [3] that an ESCT expression can be directly mapped to
reversible logic gates and more specifically to Generalized Toffoli gates (refer
to Definition 6). A logic gate is called reversible, if it has the same number of
inputs and outputs, and maps each input vector into a unique output vector
and vice versa. Moreover both fan-in and fan-out are forbidden. One of their
important properties is that they consume minimal amounts of power, due to
the fact that they loose no information[4]. However, it should be noted that
this fact is technology dependent. For current CMOS technology the power
lost, because of information loss, is minimal, therefore reversible logic does not
bring any real advantage. In Ref [5] it was shown that all quantum logic gates
must be reversible. Due to this, the reversible wave cascades is a very attrac-
tive architecture for the implementation of reversible logic circuits and perhaps
quantum logic. In Fig. 1, a Reversible Wave Cascade is shown, representing an
ESCT expression. It can be observed that each column of this architecture (a
complex term), along with an additional XOR function can be considered as a
Generalized Toffoli gate (refer to Definition 6).

The reversible wave cascade is a cellular architecture suitable for mapping
ESCT expressions. Currently, there are no such commercial architectures avail-
able. Although an ESCT expression is suited for mapping into such a cellular
architecture, it can be mapped to some modern LUT (Look Up Table) FPGAs
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Figure 2: Reversible wave cascade for function of Example 1.

(Field Programmable Gate Arrays). In Ref [6] a superset of ESCT expressions
have been mapped to the ATMEL 6000 series FPGA. Nevertheless, such a map-
ping may degenerate certain features of these expressions, such as reversibility.

There were algorithms developed in the past, for mapping switching func-
tions to Cellular Array (CA) architectures and then minimizing the number of
the produced complex terms. In references [6], [7], [8], [9], [10], techniques like
variable reordering and cube transformation or even multi-valued logic are used,
in an effort to minimize the number of complex terms, though their architectures
differ from the one presented in this paper and are more complex. In references
[11], [12] a systematic method was presented to produce architectures very sim-
ilar to the Reversible Wave Cascade architecture, by extending the EXORLINK
[13] operation to complex terms. In Ref [3] it was proved that a Reversible Wave
Cascade is considered to be a reversible gate (more specifically a Generalized
Toffoli gate - Definition 6). Moreover, an algorithm is proposed for mapping
arbitrary Boolean functions to Reversible Wave Cascades but it was not im-
plemented. A similar reversible architecture is described in [14], with major
objective to minimize the number of garbage inputs, although at that time no
algorithm for the mapping and minimization of ESCT expressions to such ar-
chitectures had been proposed. In Ref [15] two algorithms were presented that
produced ESCT expressions for a single-output Boolean function while minimiz-
ing the number of terms in the produced expression. The first one guarantees
minimality for functions up to 5 variables. The second algorithm applied the
first algorithm on groups of cascades, inside the cellular array, as a term trans-
formation operation. This procedure was repeated several times, over different
groups of cascades, in order to heuristically minimize their number. These al-
gorithms have been improved in [16] with the introduction of relative terms and
in [17] they have been extended for multi-output Boolean functions.

In this paper we introduce an algorithm that can produce minimal expres-
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sions (the ones with the least number of complex terms) for a single-output
switching function f with at most 6 variables in a practical computing time.
To the best of the authors knowledge, this is the first algorithm in the related
literature, that can find minimal ESCT expressions for switching functions of 6
variables.

2 Theoretical background

In this section we provide some background definitions. An expression of a
switching function suitable for mapping to a Maitra cascade (cell chain) is called
a Maitra term[2]. A more formal definition[3] follows:

Definition 1 A complex Maitra term (complex term or Maitra term for sim-
plicity) is recursively defined as follows:

1. Constant 0 or 1 Boolean function is a Maitra term.

2. A literal is a Maitra term.

3. If Mi is a Maitra term, x∗ is a literal, and G is an arbitrary two-variable
Boolean function (Maitra cell), then Mi+1 = G(x∗,Mi) is a Maitra term.

Additionally, it is required that each variable appears in each Maitra term only
once. In other words a complex term is: P = Gn(x∗n, Gn−1(x∗n−1, . . . G1(x∗1, 0))),
where x∗i are literals and xi are the variables P depends on. It is noted that
in this previous definition x∗i does not need to be in its negative form, since for
every single output two variable Boolean function Gn(x, y), there exists another
single output two variable Boolean function G

′
n such that: Gn(x, y) = G

′
n(x̄, y).

Definition 2 An ESCT (Exclusive-or Sum of Complex Terms) expression (some-
times also called Maitra expression) for a switching function, is a XOR sum of
complex terms:

f =
m∑

i=1

⊕Mi,

where Mi are complex terms and m is their number inside the expression. The
same variable ordering is used for every Mi.

Example 2 Let f(x1, x2, x3) = x1x2x3, where x3 is the most significant vari-
able and x1 is the least significant one. The expression x1x2x3 is an ESCT
expression for f . Another ESCT expression for f is: (x̄1 + x̄2)⊕ (x̄1 + x̄2 +x3),
where (x̄1 + x̄2), (x̄1 + x̄2 + x3) are complex terms.

It can be observed that a complex term defines a specific variable ordering
for its variables. For P , xn is the most significant variable and x1 is the least
significant (xn, xn−1, . . . , x2, x1 is the order of variable significance). If the vari-
able ordering changes then it is possible that the new expression produced may
not be a complex term. This will be clarified with the next example:

Example 3 Let f(x1, x2, x3, x4) = x4x3(x2 ⊕ x1). If we define the following
variable ordering: x4, x3, x2, x1, where every variable is more significant than its
right adjacent, then f is the complex term P = G4(x4, G3(x3, G2(x2, G1(x1, 0)))),
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Figure 3: Reversible Wave Cascades for different variable orderings of function:
f(x1, x2, x3, x4) = x4x3(x2 ⊕ x1).

where G4 = x4G3, G3 = x3G2, G2 = x2 ⊕ G1, G1 = x1 + 0. If we define a dif-
ferent variable ordering such as: x4, x2, x3, x1, where every variable is more
significant than its right adjacent, then function f = x4x2x3 ⊕ x4x3x1, us-
ing this variable ordering, can not be expressed as one complex term P =
G4(x4, G2(x2, G3(x3, G1(x1, 0)))), since we cannot define any suitable single
output two variable Boolean function G2, with inputs x2, G3. Nevertheless, us-
ing this variable ordering, we can express the f function as the XOR sum of
two complex terms: P1 ⊕ P2 = x4x2x3 ⊕ x4x3x1. The reversible wave cascades
that correspond to the different variable orderings of Boolean function f are pre-
sented in Fig. 3. The leftmost Reversible Wave Cascade corresponds to the first
variable ordering, while the rightmost one to the second variable ordering.

Definition 3 A minimal (or exact) expression of a switching function f(x1, . . . , xn)
of n variables is defined as the ESCT expression which has the least number of
terms comparing to every other ESCT expression for this function.

Example 4 The ESCT expression (x̄1+x̄2)⊕(x̄1+x̄2+x3) of Boolean function
f , which was presented in example 2, is not minimal. Another ESCT expres-
sion of f is x1x2x3 which is minimal, since it contains only one complex term
(x1x2x3) and there can be no other ESCT expression for this function with fewer
complex terms (an ESCT expression having zero complex terms represents only
a constant Boolean function and f is, obviously, not constant).
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Definition 4 The ESCT weight w(f) (or simply weight) of a switching function
f(x1, . . . , xn) of n variables, is defined as the number of complex terms in a
minimal ESCT expression of f .

Example 5 In the previous example, the weight of the function f is equal to
1 (e.g. the number of complex terms in the minimal expression x1x2x3 of f).

Definition 5 A switching function is called cascade realizable, if it has weight
1.

It can easily be proved that every two-variable switching function is cascade
realizable, since each Maitra cell can realize any two-variable function.

An ESCT expression can be directly mapped to a special cellular archi-
tecture, called Reversible Wave cascade (Fig. 1). A complex (Maitra) term is
mapped to a column in the reversible wave cascade, excluding the last XOR cell.
Each column is composed of cells (rij , 1 ≤ i ≤ n, 1 ≤ j ≤ m). The horizontal
input to each cell is a variable and is propagated to the horizontal output of the
cell. The vertical input is the output of the previous cell in the same column (or
the constant 0 in the case of the first cell of each column). The outputs of each
column are connected to the XOR collector, thus obtaining the function F (x).
Every such cell implements a single output two variable switching function (this
function corresponds to the Maitra cell of Definition 1).

An ESCT expression is composed of reversible Generalized Toffoli gates [3].

Definition 6 A k ∗ k generalized Toffoli gate is defined [3] as: P1 = A1, P2 =
A2, . . . , Pn−1 = An−1, Pn = fn−1(A1, A2, . . . , An−1)⊕An, where Ai are the in-
puts of the gate, Pi are the outputs of the gate and fn−1 is an arbitrary switching
function of n− 1 variables.

In Ref [3] it was proved that a k ∗ k generalized Toffoli gate is reversible.
Obviously, a Maitra cascade, composed of n cells, plus the corresponding XOR
collector cell, is a (n + 1) ∗ (n + 1) Toffoli gate (Fig. 1) where: P1 = A1 =
x1, . . . , Pn = An = xn, An+1 = 0 (or the output of another Toffoli gate) , Pn+1 =
fn(A1, A2, . . . , An)⊕An+1 and fn(A1, A2, . . . , An) = Gn(Gn−1(. . . G1(0, x1), xn−1), xn)
(Gi, i ≤ n are Boolean functions defined in Definition 1). It follows that a Re-
versible Wave Cascade is a reversible logic circuit because it is composed of
reversible gates.

Is is obvious that the mapping of an ESCT expression to a reversible circuit
is a trivial procedure. Algorithms that create ESCT expressions for switching
functions are very attractive, since, in essence, they produce reversible circuits.
Moreover, algorithms that create minimal ESCT expressions for switching func-
tions are even more useful, because they produce smaller reversible circuits,
resulting in, possibly, smaller production costs. Even more, as the technology
in chip manufacturing advances, the energy consumption of such circuits will
be diminished, since they loose no power due to information loss, and the heat
dissipation caused by technological limits will gradually be reduced. This will,
possibly, make architectures, like the reversible wave cascade, even more attrac-
tive. Unfortunately, in today’s VLSI technologies (like CMOS) the power loss,
even in reversible circuits, is still great due to heat dissipation.

It has been proved[18] that a Maitra cell doesn’t need to implement every
two-variable switching function. A set of only six functions is sufficient (com-
plete set). Of course, there are many equivalent such sets[19]. We have adopted
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Figure 4: Reversible Wave Cascades for example 6.

(in the rest of the paper) one of them which can be seen in Table 1. The cas-
cades that use cells which implement any switching function, from the complete
set, are called Restricted Maitra Cascades and lead to smaller representations,
since only three bits per Maitra cell are required for the representation of each
cell instead of four. From this point on, without loss of generality, when we
mention Maitra cascades, we will refer to restricted Maitra cascades.

Example 6 Let f(x1, x2, x3) = (x1 + x2) ⊕ x3 (x3 is the most significant
variable and x1 is the least significant one). This function can be expressed
as one cascade, shown in the rightmost part of Fig. 4, where each cell can
realize every possible single-output two variable Boolean function. In this case,
we choose functions: r1 = 0 + x1, r2 = r1 + x2, r3 = r2 ⊕ x̄3. This function,
however, can be realized using cells from the set defined in Table 1. In this case:
f(x1, x2, x3) = (x1 + x2)⊕ x̄3 = (x1 + x2)⊕ x3 = x̄1x̄2 ⊕ x3 and the cells used
are: q1 = 0 + x̄1(cell of index 2), q2 = q1x̄2(cell of index 3), q3 = q2⊕ x3(cell of
index 5). This restricted cascade is shown in the leftmost part of Fig. 4.
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Table 1: Cell index set
Cell index(r) Fr(x, y)

1 x + y
2 x + y
3 xy
4 xy
5 x⊕ y
6 y

It is assumed that the first cell in every cascade has one of its inputs con-
nected to 0 (for symmetry reasons). Hence, the first cell of a chain needs to be
of index 1, 2 or 6 only[15].

2.1 Representation

Next, we will present the definitions of the representation we use, for the rest of
this paper, for an arbitrary Boolean function and an arbitrary ESCT expression.

Definition 7 The minterm representation (MT) of a switching function f with
n variables, is a bitvector of size 2n where the i-th bit is 1 if the i-th minterm
of f is 1.

It can easily be observed that the MT representation of a Boolean function
depends on its assumed variable ordering. This will be clarified with the next
example.

Example 7 Let f(x1, x2, x3) = (x1x2) + x3. The Truth Table of f is shown
in Table 2:

Table 2: Truth table for function of example 7.
1st var ordering 2nd var ordering

x3 x2 x1 f(x1, x2, x3) x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 1 1 1 0 1 1 1
1 0 0 1 1 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

If we use the following variable ordering: x3, x2, x1 (x3 is the most signifi-
cant variable and x1 is the least significant), then the MT representation of f is
11111000 (the leftmost digit represents the minterm x3x2x1 and the rightmost
the minterm x̄3x̄2x̄1). If we use the following variable ordering: x1, x2, x3 (x1

is the most significant variable and x3 is the least significant), then the MT rep-
resentation of f is 11101010 (the leftmost digit represents the minterm x1x2x3

and the rightmost the minterm x̄1x̄2x̄3).
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For the rest of this paper, the MT representation of a Boolean function will
be enclosed in brackets and will be displayed using hex digits. The hexadecimal
notation is used in place of the binary one in order to improve the readability
of the paper. In the previous example the first MT representation will be: [f8]
and the second: [ea].

A complex term is characterized by its cells, since its first input is the con-
stant 0. Therefore, we can represent it by a series of cells.

Definition 8 The cell representation of a complex term, is a series of numbers,
corresponding to the series of indices of Maitra cells (Table 1) that belong to
the complex term. The leftmost cell corresponds to the cell with the constant
input 0 (corresponds to the least significant variable of the complex term) and
the rightmost to the one closest to the XOR collector (corresponds to the most
significant variable of the complex term).

Example 8 Let’s assume function f(x1, x2, x3, x4) = (x1 ⊕ x2)x3 + x4 =
[ff60].
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This function is one complex term, if we use the following variable ordering:
x4, x3, x2, x1 (x4 it the most significant variable and x1 is the least significant).
It can be rewritten as: f = F1(x4, F5(x5, F1(x1, 0))) = (x4+(x3(x2⊕(x1+0)))).
Using cells from the previously defined cell set, it can be represented as: (1541)
(the left-most cell is the one with one of its inputs hardwired to constant 0). The
Maitra cascade corresponding to this complex term is shown in Fig. 5 (along
with it’s Karnaugh map and its MT representation).

For the rest of this paper the cell representation of a complex terms will
be enclosed in parenthesis (as opposed to the minterm representation, which is
enclosed in brackets).

Every Boolean function can be expressed with the help of its subfunctions
(they are defined below) through relations, known as Boolean decompositions
(or expansions). The Boolean decompositions form the backbone of our theo-
retical approach for the minimization of Boolean functions.

Definition 9 Let f(x) be a switching function and x the vector of its variables.
Let xi be one of the variables in the vector x. Then f(x1, x2, . . . , xi = 0, . . .),
f(x1, x2, . . . , xi = 1, . . .) and {f(x1, x2, . . . , xi = 0, . . .) ⊕ f(x1, x2, . . . , xi =
1, . . .)} are subfunctions of f , regarding variable xi. For simplicity, in the rest
of this paper, they will be referred as f0, f1 and f2 respectively and xi will be
referred as x.

A Boolean function f can be expressed as (Shannon, Positive Davio and
Negative Davio respectively):

• f(x) = x̄f0 ⊕ xf1

• f(x) = xf2 ⊕ f0

• f(x) = x̄f2 ⊕ f1

The next definition presents the generator tree, which is the standard de-
composition procedure used later by our minimization algorithms.

Definition 10 Let f be an n-variable switching function. By creating the sub-
functions f1, f0, f2 of f and then the subfunctions of f ’s subfunctions and so on
(recursively), a ternary tree is generated. The leftmost branch of each subtree
represents the f1 subfunction of the subtree’s root, the middle one represents the
f0 subfunction and the rightmost represents the f2 subfunction. This decompo-
sition is applied until the constant 0 or 1 function is encountered or a leaf (a
two variable Boolean function) is obtained. This tree is named the generator
tree.

Example 9 Let f(x1, x2, x3, x4) = [(x1 + x̄2)x̄3x4] ⊕ [x̄1x̄2x3x̄4] or in MT
formulation: [0b10]. Assuming the following variable ordering: x4, x3, x2, x1,
where x4 is the most significant variable and x1 is the least significant one, its
generator tree can be seen in Fig. 6.

Theorem 1 (Complement complex term) The complement function of a
complex term is also a complex term. In the complement term, each cell with
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index belonging to set {1,3} or {2,4} is replaced by the other member of the
same set. Cells with index belonging to the set {5,6} remain the same in the
complement term. Especially for the cells that have one of their inputs equal to
the constant 0, index 1 changes to index 2 and vice versa.

Proof. It can easily be proved exhaustively, using recursion (start from a
simple cell). Q.E.D.

Example 10 The complement of a function composed of two complex terms:
f = [0bb4] = (1234) ⊕ (2453) is: f = (1234) ⊕ (2453) ⊕ 1 = (1234) ⊕ (2453) =
(2412)⊕ (2453) = (1234)⊕ (2453) = (1234)⊕ (1251) = [f44b].

Theorem 2 (Complex term ⊕x) The result of the XOR-sum of a complex
term f = Fn(xn, Fn−1(xn−1, . . . F1(x1, 0)), where Fi are Maitra cells, with xn

(the variable corresponding to the last cell of the complex term) is also a complex
term.

Proof. It can easily be proved exhaustively, considering all possible cell types.
Q.E.D.

Example 11 Let f(x1, x2, x3, x4) = (x1 + x̄2)x̄3x̄4 = (1233) (x4 is the most
significant variable), then: f(x1, x2, x3, x4)⊕ x4 = (x1 + x̄2)x̄3x̄4 ⊕ x4 = (x1 +
x̄2)x̄3x̄4⊕x̄4⊕1 = ((x1+x̄2)x̄3⊕1)x̄4⊕1 = (x̄1x2+x3)x̄4⊕1 = (x1+x̄2)x̄3+x4 =
(1231).

Corollary 1 (Complex term ⊕x) The result of the XOR-sum of a complex
term f = Fn(xn, Fn−1(xn−1, . . . F1(x1, 0)), where Fi are Maitra cells, with xn =
xn⊕ 1 (the variable corresponding to the last cell of the complex term) is also a
complex term.

Proof. It is a consequence of Theorems 1 and 2, since x̄ = x⊕ 1. Q.E.D.

Example 12 Let f(x1, x2, x3, x4) = (1233) (x4 is the most significant vari-
able), then: f(x1, x2, x3, x4)⊕ x4 = (1233)⊕ x4 ⊕ 1 = (1231)⊕ 1 = (2413).

The rules to create such expressions are presented in Table 3, for complex
terms: Fp(xn, y), Fq(xn, y1) = Fp(xn, y)⊕ xn and Fr(xn, y2) = Fp(xn, y)⊕ xn.
In Table 3 y, p is the initial input and the cell index of term Fp and (y1, q), (y2, r)
are the initial inputs and the cell indices of terms Fp⊕xn, Fp⊕x̄n (for cell indices,
see Table 1).
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Table 3: XOR-sum of a complex term with X or X̄
p y1 q y2 r
1 y 3 ȳ 1
3 y 1 ȳ 3
2 ȳ 2 y 4
4 ȳ 4 y 2
5 y 6 ȳ 6
6 y 5 ȳ 5

Example 13 Let f = (x1 ⊕ x2)x3 + x4 be a complex term or in the cell rep-
resentation form: (1542). The complement term of f is: f̄ = (2524). The
XOR-sums of f with x4 and x4 are: f ⊕ x4 = (2522) and f ⊕ x4 = (1544)
respectivelly.

Corollary 2 The XOR sum of a switching function f with x, x and 1 produces
a new switching function with the same weight as f (x is f ’s most significant
variable).

Proof. It is easily derived from Theorem 1 and 2. Q.E.D.

2.2 Minimization theorems

Definition 11 An equivalent expression (F2) of a Maitra expression (F1) for a
switching function f(x1, . . . xn) is an expression produced by applying Theorem
1, 2 or Corollary 1 to pairs of terms in the expression F1.

Example 14 Let: F1 = f(x1, x2, x3, x4) = ((x1 + x̄2)x̄3x4) ⊕ (x̄1x̄2x3x̄4) =
(1234)⊕ (2343) (x4, x3, x2, x1 is the variable significance order, where x4 is the
most significant and x1 is the least significant one). An equivalent expression of
F1 by applying Theorem 3 is: F2 = f(x1, x2, x3, x4) = (((x1 + x̄2)x̄3x4)⊕ x4)⊕
((x̄1x̄2x3x̄4)⊕x4) = ((((x1 + x̄2)x̄3)⊕ 1)x4)⊕ ((x̄1x̄2x3x̄4)⊕ x̄4⊕ 1) = ((((x1 +
x̄2)x̄3)⊕ 1)x4)⊕ (((x̄1x̄2x3)⊕ 1)x̄4 ⊕ 1) = (((x1 + x̄2)x̄3))x4 ⊕ ((x̄1x̄2x3)x̄4 ⊕ 1
= (x1 + x2 + x̄3)x4 ⊕ (x̄1x̄2x3 + x4)). Using the cell representation: F2 =
{(1234)⊕ x4} ⊕ {(2343)⊕ x4} = (2414)⊕ (2341).

Theorem 3 Each minimal expression of a switching function f can always be
written in one of the following compact forms:

• First Compact Form:
f = Fp(xn, y) (1)

(with one subfunction constant e.g. 0 or 1)

• Second Compact Form:

f = Fp(xn, y)⊕ Fq(xn, z) (2)

• Third Compact Form:

f = Fp(xn, y)⊕ Fq(xn, z)⊕ Fr(xn, g) (3)

12



Table 4: Cell indices and inputs for Theorem 3

First Compact Form Second Compact Form Third Compact Form
p y constant subfunction p q y z p q r f0 f1 f2

1 f0 f1 = 1 3 4 f0 f1 3 4 6 y ⊕ g z ⊕ g y ⊕ z

2 f1 f0 = 1 1 2 f0 f1 1 2 6 ȳ ⊕ g z̄ ⊕ g ȳ ⊕ z̄

3 f0 f1 = 0 1 4 f0 f1 1 4 6 ȳ ⊕ ḡ z ⊕ ḡ ȳ ⊕ z

4 f1 f0 = 0 3 2 f0 f1 3 2 6 y ⊕ ḡ z̄ ⊕ ḡ y ⊕ z̄
5 f0 f2 = 1 3 6 f2 f1 1 4 6 y ⊕ g z̄ ⊕ g y ⊕ z̄

6 f0 f2 = 0 1 6 f2 f1 1 4 5 y ⊕ g z ⊕ g y ⊕ z
1 5 f2 f1 3 4 5 y ⊕ g z̄ ⊕ g y ⊕ z̄

3 5 f2 f1 3 2 6 ȳ ⊕ g z ⊕ g ȳ ⊕ z
4 6 f2 f0 3 2 5 ȳ ⊕ g z̄ ⊕ g ȳ ⊕ z̄

2 6 f2 f0 1 2 5 ȳ ⊕ g z ⊕ g ȳ ⊕ z

4 5 f2 f0 3 4 6 ȳ ⊕ ḡ z̄ ⊕ ḡ ȳ ⊕ z̄

2 5 f2 f0 3 4 5 ȳ ⊕ ḡ z ⊕ ḡ ȳ ⊕ z
1 4 6 ȳ ⊕ ḡ z̄ ⊕ ḡ ȳ ⊕ z̄
1 2 6 y ⊕ ḡ z ⊕ ḡ y ⊕ z
1 2 5 y ⊕ ḡ z̄ ⊕ ḡ y ⊕ z̄
3 2 5 y ⊕ ḡ z ⊕ ḡ y ⊕ z

where the valid combinations of cell indices and their corresponding inputs
are presented in Table 4.

According to Theorem 3 every minimal ESCT expression of a Boolean func-
tion can be written in one of the three compact forms. Table 4 contains all the
possible cases, referred by Theorem 3.

The horizontal lines in each column (Compact form) of Table 4 denote forms
which are equivalents.

The main minimization theorem, which is the theoretical backbone of our
minimization algorithms XMin5 and XMin6 follows.

Theorem 4 A minimal expression of a switching function f of n variables
with weight at most W , can be obtained by merging (XOR summing) switching
functions of weight at most bW/3c, with the subfunctions of f .

Q.E.D.

2.3 Additional Theorems

Next we give two lemmas.

Lemma 1 If fi, fj are subfunctions of a Boolean function f of n + 1 variables,
k1, k2, k3 are switching functions of n variables and:

• fi = k1 ⊕ k3

• fj = k2 ⊕ k3
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• w(f) = w(k1) + w(k2) + w(k3)

then [w(fi)+w(fj)]−w(f) = [w(fi)+w(fj)]− [w(k1)+w(k2)+w(k3)] ≤ w(k3).

The above lemma holds for every possible pair of subfunctions (f0, f1),
(f0, f2), (f2, f1) and denotes that the actual weight of a Boolean function f
minus the estimation of its weight produced as w(fi) + w(fj), where fi, fj =
f0, f1, f2, i 6= j is always bounded. If the estimation of the weight is w(f0) +
w(f1) or w(f0) + w(f2) or w(f2) + w(f1) then the bound, according to Table 4,
is w(g), w(y), w(z) respectively (for example: f0 = y ⊕ z, f1 = z ⊕ g, therefore,
according to Lemma 1, w(f0) + w(f1)− w(f) ≤ w(g), since k3 = g).

This fact may be used as a pruning technique in our proposed algorithms.

3 The Minimization Algorithms

Based on the previous theorems and lemmas, we present two algorithms (XMin5
and XMin6) that can find minimal expressions for switching functions of 5 and
6 variables respectively.

First, we will describe XMin5 intuitively. As Theorem 3 suggests, every
minimal expression of a Boolean function is in one of the three compact forms.
Since we do not know which one, XMin5 must evaluate all three cases. Initially,
XMin5 checks if the Boolean function is in the first compact form of the Theorem
3. In this case, as Theorem 3 suggests, one of the subfunctions f0, f1, f2 of the
Boolean function is constant (1 or 0). Therefore, the weight of the Boolean
function is equal to the weight of the non-constant subfunction.

If the Boolean function has no constant subfunctions then each minimal
expression of the Boolean function is either in the second or the third compact
form of Theorem 3. Initially, XMin5 assumes that all minimal ESCT expressions
of the input Boolean function are in the second compact form. In this case the
weight of the function, according to Theorem 4, will be: w = MIN(w(f0) +
w(f1), w(f1) + w(f2), w(f0) + w(f2)) (refer to the proof of Theorem 4).

Of course, in the general case, the actual weight of our input function may
be even less than MIN(w(f0) + w(f1), w(f1) + w(f2), w(f0) + w(f2)), in which
case there will be at least one minimal expression of our input function in
the third compact form of Theorem 3. Theorem 4 shows us how to find this
expression. For every possible g function with number of input variables equal
to that of subfunctions f0, f1, f2 and weight less or equal to the weight of our
input function divided by three, we must create the following XOR sums: f0 ⊕
g, f1 ⊕ g, f2 ⊕ g. The expressions which we will produce are of the following
form: fk1(xn, g)⊕fk2(xn, fi⊕ g)⊕fk3(xn, fj ⊕ g), where k1, k2, k3 = p, q, r and
fi, fj = f0, f1, f2 and k1 6= k2 6= k3, fi 6= fj (Table 4). The minimal expression
we are searching for, is produced when we select the appropriate g function,
so that this expression has the least possible number of complex terms among
all the others. Since our input function has 5 input variables, then according
to Corollary ??, the g function must have weight at most 1, thus it must be
a complex term. We will call K terms, those g complex terms which produce
minimal expressions for our input function. The resulting weight of our input
function will be: w = w(fi⊕K)+w(fj⊕K)+w(K) = w(fi⊕K)+w(fj⊕K)+1
(w(K) = 1, since K is a complex term) (third compact form).
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In this last case, since there is no profound way to find the appropriate K
complex term, we must check all possible 4 variable complex terms to determine
if one or more of them produce minimal expressions for our input function in
the third compact form of Theorem 3.

Algorithm XMin6 is similar to XMin5 but works for 6-variable Boolean func-
tions. XMin6, like XMin5, uses the results of Corollary ??, Corollary 2 and
algorithm XMin5 in order to find the weight of a switching function (and at
least one minimal expression for it). During the phase where XMin6 tries to
determine if there is a minimal expression in the third compact form of Theorem
3, it uses 5-variable Boolean function with weight at most 3 (due to Corollary
??).

4 Conclusions

An algorithm has been proposed in this paper for the exact minimization of
ESCT expressions for single-output switching functions of up to 6 variables. To
the best of the authors’ knowledge this is the first algorithm in the literature
that can find minimal ESCT expressions for switching functions of 6 variables
and moreover in a practical computing time.
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