
Minimization of reversible wave cascades -

PRELIMINARY VERSION

Dimitrios Voudouris(dvoudour@cslab.ece.ntua.gr)
Stergios Stergiou(stergiou@cslab.ece.ntua.gr)

George Papakonstantinou(papakon@cslab.ece.ntua.gr)

Abstract

In this paper two algorithms for the synthesis and minimization of a
CA (cellular array architecture) are proposed. Starting from a completely
specified single-output switching function, our methods produce rectan-
gularly shaped arrays of cells, interconnected in chains, with an effort to
minimize the number of the produced chains (cascades). This kind of
cellular topology is known throughout the bibliography as Maitra cellu-
lar arrays. The significance of those algorithms is underlined by the fact
that this particular type of cellular architecture can be mapped to re-
versible circuits and gates (generalized Toffoli gates), which are the type
of logic used in quantum circuits. The proposed methodologies include
use of ETDDs (EXOR ternary decision diagrams), and switching function
decompositions (including new types of boolean expansions).

1 Introduction

A circuit is called reversible if it has the same number of inputs and outputs
and maps each input vector into a unique output vector and vice versa. One
of their important properties is that they consume minimal amount of power
due to the fact that they lose no information [16]. It is expected that they will
become more attractive for future technologies. All quantum logic gates are also
reversible [11]. Systematic logic synthesis algorithms for reversible logic are still
immature, although some methods have been presented in the related literature
[3], [12]. In Ref [3] the k ∗k Generalized family of Toffoli gates were introduced,
based on Maitra cascades [1], to form a special type of cellular arrays, called
reversible wave cascades (or Maitra cellular arrays). This special architecture is
one of the simplest forms of cellular arrays because it requires very simple cells,
with limited interconnection between them(Fig. 1). The cells are connected in
chains, usually called Maitra cascades or terms or even complex terms, (upper
plane) which in turn are linked together by the collector row (lower plane),
to form the wave cascades array. In this paper, the collector row implements a
XOR function using as inputs the outputs of the cascades. Every Maitra cell can
realize a two-variable switching function. One of the inputs is the corresponding
variable and the other is the output of the previous (in physical order) cell in
the chain. It will be shown in section 2 that a Maitra cellular array architecture
forms a reversible logic circuit.

1

��������������R11

Rn1

R12

Rn2

R1m

Rnm

0 0 0

X1

Xn

F(x)

Maitra
Cascade

Maitra Cells

XOR
Collector

row

Generalized
(n+1)x(n+1)
Toffoli gate

0

Pn+1(last output of 1st cascade)

Figure 1: Reversible wave cascade CA

Synthesis of cellular arrays and cascades and especially of Maitra cellular
arrays has been a main scientific interest in the sixties and seventies, although
due to technical difficulties, no corresponding tools or hardware architectures
have been created [5]. Recently, with the introduction of CA type architec-
tures and more specifically LUT-based and CA-type FPGAs, a growing need
for specialized tools that can map arbitrary switching functions to cellular array
architectures has emerged ([4], [5]).

Although algorithms for mapping switching functions to such architectures
have been developed in the past, the minimization of a wave cascade (the special
form of a switching function which can be directly mapped to a Maitra cellular
array) and especially those that use XOR collector rows is still an open problem.

In Ref [4] cube calculus operations, variable reordering (using also the EX-
ORLINK operation) and technology folding of input and output planes of the
array are used in order to minimize the number of product terms of a given
switching function (a product term is a special case of a Maitra term). The fi-
nal minimized expressions are composed of product terms (not complex terms).
In Ref [5] the mapping of incompletely-specified, multi-output switching func-
tions is performed using the concept of KFDD (Kronecker function decision
diagrams) and three heuristic algorithms are given. In Ref [6], TDDs (ternary
decision diagrams) along with variable reordering technics are used, to produce
cellular cascades. The expressions produced from the above algorithm, are not
composed of complex terms (as defined above), since the output of a cell in a
chain can be connected not only to its physically next, but to others as well.
Moreover, the usage of SHANNON and DAVIO decompositions at each level of
the TDD produces product terms. In Ref [7] a similar method is introduced that
uses TDDs, but applies for incompletely specified functions as well. The result-
ing CA architecture may contain, except the usual XOR collector row, an OR

2

collector row as well. In Ref [8] an extension of the theory of Maitra cascades is
proposed, by extending the number of possible inputs and outputs of each cell,
using multi-value logic. Folding technics are also used. All the above methods
utilize architectures that are different from the wave cascade architecture which
is used in this paper. In Ref [14], [15] a systematic method is proposed for
minimizing expressions composed of Maitra terms, using an extension of the
EXORLINK operation. The architecture which was proposed, though, is differ-
ent from the one used in this paper. In Ref [3] another algorithm is presented for
mapping Maitra cellular arrays to reversible gates (more specifically generalized
Toffoli gates). Nevertheless their algorithm has not been implemented and they
only give upper bounds on the number of stages in terms, based on methods
from ESOP minimization. Finally, none of the above algorithms guarantees
minimality.

2 Theoretical background

In this section we provide some background definitions. An expression of a
switching function, suitable for mapping to a Maitra cascade (cell chain), is
called a Maitra term. A more formal definition [3] follows:

Definition 1. A complex Maitra term (complex term for simplicity) is recur-
sively defined as follows:

1. Constant 0 (1) Boolean function is a Maitra term.

2. A literal is a Maitra term.

3. If Mi is a Maitra term, a is a literal, and G is an arbitrary two-variable
Boolean function, then Mi+1 = G(a, Mi) is a Maitra term.

Additionally, it is required that each variable appears in each Maitra term
only once.

Definition 2. A reversible wave cascade expression for a single-output switch-
ing function is an exlusive-OR sum of complex terms:

f =
m∑

i=1

⊕Mi,

where m is the number of complex terms. Moreover, the same variable ordering
is used for every Mi.

Definition 3. A minimal (or exact) expression of a switching function f(x1, . . . , xn)
of n variables is defined as the wave cascade expression which has the least num-
ber of terms comparing to every other wave cascade expression for this function.

Definition 4. The weight w(f) of a switching function f(x1, . . . , xn) is defined
as the number of complex terms in a minimal expression of f .

Definition 5. A switching function is called cascade realizable, if it has weight
1.

3

It can be proved [1] that every two-variable switching function is cascade
realizable.

A wave cascade expression can be directly mapped to a reversible wave cas-
cade cellular architecture(Fig. 1).It consists of two-input, one-output cells(Maitra
cells) which, normally, implement every two-variable switching function, i.e. six-
teen functions. Many cells are linked together to form chains (cascades). The
cascades of a wave cascade expression constitute the upper-input plane of the
cellular architecture and are linked together through the collector row, i.e. a hor-
izontal array of cells implementing the XOR function (lower-collecting plane).
The number of cells in every cascade is equal to the number of variables of the
function. The first input of every Maitra cell is supplied by one of the variables
and the second one is the output of the previous (in physical order) cell in the
cascade.

Definition 6. A k ∗ k generalized Toffoli gate is defined [3] as: P1 = A1, P2 =
A2, . . . , Pn−1 = An−1, Pn = fn−1(A1, A2, . . . , An−1) ⊕ An, where Ai are the
inputs of the gate, Pi are the outputs of the gate and fn−1 is an arbitrary
switching function of n− 1 variables.

In Ref [3] it was proved that a k ∗ k generalized Toffoli gate is reversible.
A Maitra cascade, composed of n cells, plus the corresponding XOR collec-
tor cell, is a (n + 1) ∗ (n + 1) Toffoli gate (Fig. 1) where: P1 = A1 =
X1, . . . , Pn = An = Xn, An+1 = 0 (or the output of another Toffoli gate)
, Pn+1 = fn(A1, A2, . . . , An)⊕An+1 and fn(A1, A2, . . . , An) = Gn(Gn−1(. . . G1(0, X1), Xn−1), Xn)
(Gi, i ≤ n are arbitrary boolean functions defined in Def. 1). It follows that
a Maitra cellular array is a reversible logic circuit because it is composed of
reversible gates.

It has been proved [2] that a Maitra cell doesn’t need to implement every
two-variable switching function. A set of only six functions is sufficient(complete
set). A function which is cascade realizable using all 16 two-variable functions,
is also cascade realizable using a complete set of 6 two-variable functions. Of
course there are many equivalent such sets [13]. In the rest of this paper, we will
use one of them (Table 1). The cascades that use cells which implement any
switching function from the complete set are called Restricted Maitra Cascades
and lead to smaller implementations, since only three bits per Maitra cell are
required instead of four. From this point on, without loss of generality, when
we mention Maitra cascades, we will be referring to restricted Maitra cascades.

Table 1: Cell index set

Cell index(r) Fr(x, y)
1 x + y
2 x + y
3 xy
4 xy
5 x⊕ y
6 y

4

It is assumed that the first cell in every cascade has one of its inputs con-
nected to 0 (for symmetry reasons). In the following lemma we prove that the
first cell of a chain needs to be of index 1, 2 and 6 only.

Lemma 1. The set {1, 2, 6} of indices for the first cell of a complex term is
complete.
Proof. One of the inputs of the first cell of every complex term is the constant
0. So the possible values for the output(Fr, r the index of the cell) of the first
cell are:

• F1 = x1

• F2 = x̄1

• F3 = 0

• F4 = 0

• F5 = x1

• F6 = 0
So the three possible values are x, x̄, 0 and in order to produce them, we
may use indices 1, 2, 6.

In the following section we will define new switching function decompositions.

3 Switching Function Decompositions

Definition 7. Let f(x) be a switching function and x the vector of its variables.
Let x1 be one of the variables in the vector x. Then f(x1 = 0, x2, . . .), f(x1 =
1, x2, . . .) and {f(x1 = 0, x2, . . .) ⊕ f(x1 = 1, x2, . . .)} are subfunctions of f ,
regarding variable x1. For simplicity, in the rest of this paper, we will refer to
f(x1 = 1, x2, . . .) as f1, to f(x1 = 0, x2, . . .) as f0, to {f(x1 = 0, x2, . . .)⊕f(x1 =
1, x2, . . .)} as f2 and to x1 as x.

Given a Boolean function f(x), where x is the vector of the function’s vari-
ables, and a variable x in this vector, we can express f as:

• f(x) = x̄f0 ⊕ xf1

• f(x) = xf2 ⊕ f0

• f(x) = x̄f2 ⊕ f1

The first of those rules is known as the SHANNON expansion and the rest as
the DAVIO expansions(positive Davio and negative Davio respectively). Those
previous expressions (also known as switching function expansions), decompose
a function to a XOR-sum of its subfunctions’ expressions and have been exten-
sively used in ESOP minimization.

Before the introduction of the new switching decompositions, two lemmas,
will be presented, for merging Maitra cells.

5

Lemma 2 (Two cell merging). The relation
Fr1(x, y1)⊕ Fr2(x, y2) = Fr(x, y1 ⊕ y2), y1 6= y2 and y1 6= ȳ2

is true iff:
(r1, r2, r) = (1, 1, 3), (1, 3, 1), (2, 2, 4), (2, 4, 2), (3, 3, 3),
(4, 4, 4), (5, 5, 6), (5, 6, 5), (6, 6, 6)
Proof. The above lemma can easily be proved exhaustively.

The next lemma can easily be derived from the previous.

Lemma 3 (N cell merging). The relation∑⊕Fri
(x, yi) = Fr(x,

∑⊕yi), yi 6= yk, yi 6= ȳk,∀k 6= i
is true according to Table 2:

Table 2: Cell merging
Merging N cells with index ri r

Odd number with index 1 and any with index 3 1
Odd number with index 2 and any with index 4 2
Even number with index 1 and any with index 3 3
Even number with index 2 and any with index 4 4
Odd number with index 5 and any with index 6 5
Even number with index 5 and any with index 6 6

Proof. If we consider the first case of Table 2, then according to lemma 2, in
order to create a cell of index 1, we must merge one cell of index 1 and one of
index 3. A cell of index 3 can be created by merging any number of index 3 cells
or even number of index 1 cells. Therefore, we need odd number of index 1 cells
and any number of index 3 cells to produce a cell of index 1. Similar arguments
can be used for the other cases of the table.

Theorem 1 (New Decompositions). Given a Boolean function f(x), where x
is the vector of the function’s variables, and a variable x in this vector, we can
express f as:

f(x) = (x + f2)⊕ (x⊕ f1) (1)

f(x) = (x + f0)⊕ (xf̄1) (2)

f(x) = (xf̄2)⊕ (x⊕ f0) (3)

f(x) = (x + f̄0)⊕ (x̄ + f̄1) (4)

f(x) = (x̄ + f̄2)⊕ f̄0 (5)

f(x) = (x + f̄2)⊕ f̄1 (6)

f(x) = (x̄f̄2)⊕ (x⊕ f̄1) (7)

f(x) = (x̄f̄0)⊕ (x̄ + f1) (8)

f(x) = (x̄ + f2)⊕ (x⊕ f̄0) (9)

Proof. We will prove that the above rules are equivalent to the SHANNON
expansion.

For (1) it holds: f = [x + f2] ⊕ [x ⊕ f1] = [x̄f̄2] ⊕ [x ⊕ f1] = [x̄(f1 ⊕ f̄0)] ⊕
[x⊕ f1] = x̄f̄0 ⊕ x̄f1 ⊕ x̄⊕ f1 = x̄f0 ⊕ xf1

6

For (2) it holds: f = (x+f0)⊕(xf̄1) = x̄f̄0⊕xf̄1⊕1 = x̄f̄0⊕xf̄1⊕(x⊕ x̄) =
x̄f0 ⊕ xf1

For (3) it holds: f = {xf̄2} ⊕ [x⊕ f0] = x(f0 ⊕ f̄1)⊕ x⊕ f0 = x̄f0 ⊕ xf1

Cases 4, 5 and 6 are the Shannon, and Davio expansions when we comple-
ment each term. Cases 7, 8, 9 are derived from cases 1, 2 and 3, respectively,
if we complement each term.

Theorem 2. Let f be a switching function and f0, f1, f2 its subfunctions,
expressed in the form of XOR-sum of complex terms. The application of the
above rules ((1), (2), (3), (4), (5), (6), (7), (8), (9)) creates expressions for f
which are also in the form of XOR-sum of complex terms.
Proof. In the above decompositions every term of the XOR-sum is of the form:

G(x, fi), where G(x, fi) =

x + fi

x̄ + fi

xfi

x̄fi

x⊕ fi

fi

, and fi is f0, f1, f2.

The above operations form the Maitra cell set of Table 1, therefore every such
form of G can be implemented using one Maitra cell. Hence, if the expressions
of two subfunctions fi to be used, in one of the rules, have only one complex
term, then the expression of f would consist of the two complex terms of its
subfunctions, each one with one more cell of index 1, 2, 3, 4, 5 or 6 respectively.
If the expressions of the subfunctions have more complex terms, then Lemma 3
will be used to determine what kind of cells to be added.

Theorem 2 indicates that the expansions, which were proposed in Theorem
1, produce expressions in the form of a XOR-sum of complex terms.

Theorem 3 (Complement function). The complement function of a complex
term is also a complex term.
Proof. We will use induction. The theorem obviously holds for cascades of one
cell. If it holds for cascades of n cells, then it will be shown that it holds for
n+1 cells. If the input (output of n cells) is the cascaded constant 0, then, for
n+1 cells, our rule gives:
Original function Applying the rule

F1 = x F2 = x̄
F2 = x̄ F1 = F5 = x
F5 = x F2 = x̄

In any other case, the input of the (n+1)th cell of the cascade will be comple-
mented (when compared to the original cascade - see also the respective figure).
By applying the rule we get the following results:
Original function Applying the rule

F1 = x + y F3 = x̄ȳ = x + y
F2 = x̄ + y F4 = xȳ = x̄ + y
F3 = x̄y F1 = x + ȳ = x̄y
F4 = xy F2 = x̄ + ȳ = xy

F5 = x⊕ y F5 = x⊕ ȳ = x⊕ y
F6 = y F6 = ȳ

Corollary 1. A switching function f and it’s complement function f̄ have the
same weight.

7

z ~z

0 0

X X
r ~r

One of the inputs is constant 0

One of the inputs is constant 0

Original cell Complement cell
1 2
2 1 or 5
5 2

Index 6 applies the rules to the next cell.

z ~z

Y ~Y

X X
r ~r

None of the inputs is constant

None of the inputs is constant

Original cell Complement cell
1 3
2 4
3 1
4 2
5 5
6 6

Figure 2: Complement form

Theorem 3 can be used to compute the complemented forms presented in
Theorem 1.

Theorem 4. If Fr(x, y1), Fq(x, y2), and Fg(x, y3) are three cells, with y1, y2, y3 =
y, ȳ, then the equation:

Fr(x, y1)⊕ Fq(x, y2) = Fg(x, y3)

holds according to Table 3.
Proof. It can easily be proved exhaustively.

The following theorems introduce the concept of normalized forms and re-
versible wave cascade minimization.

Theorem 5. Each minimal expression of a switching function f can always be
written in one of the following normalized forms:

f = Fp(x1, y) (10)

8

Table 3: Term Merging
y1=y y2=y y3=y

r q g
1 4 5
1 5 4
3 4 6
3 6 4
4 5 1
4 6 3

y1=y y2=y y3=ȳ
r q g
1 2 6
1 6 4
2 3 5
2 5 1
2 6 3
3 5 4

y1=y y2=ȳ y3=y
r q g
1 4 6
1 6 2
2 1 5
2 3 6
2 5 3
2 6 1

y1=y y2=ȳ y3=y
r q g
3 4 5
3 5 2
5 1 2
5 4 3
6 3 2
6 4 1

with (p, y) = (1, f0), (2, f1), (3, f0), (4, f1), (5, f0), (6, f0)
OR

f = Fp(x1, y)⊕ Fq(x1, z) (11)

with (p, q, y, z) = (3, 4, f0, f1), (3, 6, f2, f1), (4, 6, f2, f0),
(1, 5, f2, f1), (1, 4, f0, f1), (4, 5, f2, f0), considering also that forms Fp(x, y)⊕Fq(x, y)
and Fp(x, y)⊕ Fq(x, y) are equivalent.
OR

f = Fp(x1, y)⊕ Fq(x1, z)⊕ Fr(x1, g) (12)

with p = 3, q = 4, r = 6 and y ⊕ z = f2, y ⊕ g = f0, z ⊕ g = f1, consider-
ing that forms Fp(x, y)⊕ Fq(x, y)⊕ Fr(x, y) and Fp(x, y)⊕ Fq(x, y)⊕ Fr(x, y),
Fp(x, y)⊕Fq(x, y)⊕Fr(x, y), Fp(x, y)⊕Fq(x, y)⊕Fr(x, y) are equivalent. Forms
F3(x, y)⊕F4(x, y)⊕F6(x, y) and F3(x, y)⊕F4(x, ȳ)⊕F5(x, y) are also equivalent.

For the proof refer to Ref [10].

Theorem 6. At least one minimal expression of a switching function f(x1, . . . , xn)
with less than 6 variables (n < 6) or any number of variables and weight < 6
can be obtained from the minimal expressions of f0, f1, f2.
For the proof refer to Ref [10].

After proposing the concept of normalized forms, every decomposition, pre-
sented before, can be expressed as:

f = Fcell1(x, f1)⊕ Fcell2(x, f2) (13)

Cell indexes cell1 and cell2 will be called normalized cell indexes and Fcell1(x, f1),
Fcell1(x, f1) normalized terms. Table 4 presents the normalized form of all
switching decompositions proposed in this paper.

9

Table 4: Decompositions and Normalized cell indexes

Decomposition f1 Cell1 f2 Cell2

Shannon f0 3 f1 4
P Davio f2 4 f0 6
N Davio f2 3 f1 6
New (1) f2 1 f1 5
New (2) f0 1 f̄1 4
New (3) f̄2 4 f0 5
New (4) f̄0 1 f̄1 2
New (5) f̄2 2 f̄0 6
New (6) f̄2 1 f̄1 6
New (7) f̄2 3 f̄1 5
New (8) f̄0 3 f1 2
New (9) f2 2 f̄0 5

4 The heuristic algorithms

Based on the previous theorems and lemmas, we present two heuristic algorithms
that produce reversible wave cascade expressions, for single-output switching
functions, and furthermore they minimize the number of complex terms in them.

4.1 Approach 1

The first algorithm receives as input a single-output switching function in minterm
formulation and decomposes it using ETDDs (EXOR Ternary Decision Dia-
grams, a DD where the third branch is the XOR-sum of the other two). Every
function in the ETDD is decomposed, using the standard Shannon and Davio,
along with the new expansions, presented in Theorem 1. During the composition
(the reverse procedure of decomposition) of an expression by its subfunctions’
forms, equal or complemented complex terms are merged. The final minimal
expression of f will be produced by the minimal expressions of its subfunctions.
The pseudocode of the algorithm (Min1) is presented in Alg. 1.

4.2 Approach 2

This second algorithm uses Min1 as a cube transformation and minimization
technique. It creates groups of complex terms, in an iterative way, and then
applies Min1 to each of them.

The pseudocode of the algorithm (Min2) is presented in Alg. 2.

References

[1] K.K. Maitra ”Cascaded switching networks of two-input flexible cells” IRE
Trans. Electron. Comput., pp, 136-143, 1962.

[2] R. C. Minnick, ”Cutpoint cellular logic” IEEE Trans. Electron. Comput.,
vol. EC-13. pp. 685-698, Dec, 1964.

10

Algorithm 1: Min1(f : Switching function in minterm formulation) returns
(Min Expr of f)

begin
ETDD=Generate ETDD(f);
Expr(f)=Minimize(ETDD);
// If f is a 2-variable function then it is cascade realizable and the
corresponding complex term is obtained from a Look-up table.
// From the ternary tree, find the subfunctions of f .
// If the expressions of the subfunctions of f are not already found,
apply this algorithm to each subfunction recursively.
// If a subfunction is constant then produce the expressions of f from
a non-constant subfunction. The number of terms in a minimized ex-
pression of f equals the number of terms in any minimized expression
of the non-constant subfunction, but the terms of f have one more
cell (because the support of f contains one more variable), which can
be calculated from Table 4 and Lemma 3.
// If no subfunction is constant, then use the decompositions of The-
orem 1 and the already obtained expressions of the subfunctions of
f to find the expressions for f (according to Theorem 5). If same
or complemented terms exist inside an expression then merge them
according to Theorem 4. At the end keep the expressions with the
least number of terms.
// Produce all the equivalent forms for f according to Theorem 5.
// All the above expressions are the resulting minimized expressions
of f .

end

[3] A. Mishchenko, M. Perkowski, ”Logic Synthesis of Reversible Wave Cas-
cades”,International Workshop on Logic And Synthesis 2002, New Orleans,
Louisiana, June 4-7, 2002.

[4] A. Sarabi, N. Song, ”A comprehensive approach to logic synthesis and phys-
ical design for two-dimensional logic arrays”, DAC 1994, 321-326.

[5] I. Schaefer, M. Perkowski, H. Wu ”Multilevel logic synthesis for cellular
FPGAs based on orthogonal expansions”, Proc, IFIP WG 10.5 Workshop
on Applications of the Reed-Muller Expansion in Circuit Design, Sept. 1993,
Hanburg, Germany, pp. 42-51.

[6] G. Lee ”Logic synthesis for celullar architecture FPGA using BDD”, ASP-
DAC 97, pp 253-258 Jan 1997.

[7] G. Lee, R. Drechsler ”ETDD-based Synthesis of term-based FPGAs for in-
completely specified boolean functions”, ASP-DAC 1998.

[8] P. Lindgren, R. Drechsler, B. Becker ”Look-up table FPGA synthesis from
minimized multi-valued pseudo kronecker expressions”,ISMVL 98.

[9] G. Papakonstantinou, F. Gritzali ”Modulo-2 expressions of switching func-
tions”, Electronic Letters, 13(1977).

11

Algorithm 2: Min2(input: Switching function f expressed as a set of com-
plex terms, Number of Iterations) returns (Min Expr of f)

output, 5Terms, NewTerms, Expr(f): Expression of f in minterm formu-
lation;
loop: integer;
ETDD: Ternary tree;
begin

output=input;
loop=0;
while loop < Number of Iterations do

5Terms=Pick 5 random terms from output;
output=output-5Terms;
Expr(f) = Min1(5Terms);
NewTerms=Pick randomly an expression from Expr(f);
output=output+NewTerms;
loop++;

endw
return output;

end

[10] G. Papakonstantinou ”Synthesis of cutpoing cellular arrays with exclusive-
OR collector row”, Electronic Letters, 13(1977).

[11] J. Preskill ”Lecture notes in quantum computing”,
http://www.Theory.caltech.edu/ preskill/ph229

[12] M. H. A. Khan, M, Perkowski ”Logic synthesis with cascades of new re-
versible gate families”, Reed Muller 2003.

[13] G. Papakonstantinou ”Cascade Transformation”, IEEE Transactions on
computers, Jan 1976.

[14] N. Song, M. Perkowski ”Minimization of exclusive sums of multi-valued
complex terms for logic cell arrays”, ISMVL 98, p 32.

[15] N. Song, M. Perkowski ”A new approach to and/or/exor factorization for
regular arrays”, Proc. 1998 Euromicro, pp. 269-276, Vasteras, Sweden, August
25-27, 1998.

[16] C. Bennet ”Logical Reversibility of Computation”, IBM Journal of Re-
search and Development, 17, 1973, pp. 525-532.

[17] A. Mishchenko, M. Perkowski ”Fast Heuristic Minimization of Exclusive-
Sums-of-Products”, 5th International Reed-Muller Workshop, Starkville, Mis-
sissippi, Aug 2001.

12

