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Abstract

In this paper an algorithm is proposed for the synthesis and exact min-
imization of ESCT (Exclusive or Sum of Complex Terms) expressions for
Boolean functions of up to seven complex terms, regardless of the num-
ber of input variables. This kind of logical expressions can be mapped
to a special cellular architecture, called Reversible Wave Cascade Archi-
tecture. This topology is proved to be very useful, as it is reversible and
therefore it may help in the design of quantum circuits. Moreover, the
proposed algorithm is extended heuristically for functions with eight or
more complex terms.

1 Introduction

For many years, logic synthesis was based on AND, OR and NOT gates. How-
ever, for some very important groups of applications such as arithmetic, error
correcting and telecommunication applications, the use of XOR (eXclusive OR)
gates can reduce the complexity of logic circuits. The most general (and most
powerful) AND-XOR expression, is the ”Exclusive or Sum Of Products” (ESOP)
expression where a function is represented as the XOR sum of logical products
(Logical ANDs of variable literals) [1]. The natural evolution to these expres-
sions are the ”Exclusive or Sum of Complex Terms” (ESCT) expressions, where
every term may additionally use the logical OR and XOR operations. They were
introduced by K. K. Maitra in 1962 and are suited for mapping to a Reversible
Wave Cascade architecture (Fig. 1).

It has been proved [2] that an ESCT expression can be directly mapped to
reversible logic gates and more specifically to Generalized Toffoli gates. A logic
gate is called reversible, if it has the same number of inputs and outputs, and
maps each input vector into a unique output vector and vice versa. Moreover,
both fan-in and fan-out are forbidden. One of their important properties is that
they consume minimal amounts of power, due to the fact that they loose no
information [3]. However for current CMOS technology the power lost, because
of information loss, is minimal, therefore reversible logic does not bring any real
advantage.
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Figure 1: Reversible wave cascade architecture

In [4] it was shown that all quantum logic gates must be reversible. Due
to this, the reversible wave cascades is a very attractive architecture for the
implementation of reversible logic circuits and perhaps quantum logic. In Fig.
1, a Reversible Wave Cascade is shown, representing an ESCT expression. It
can be observed that each column of this architecture (a complex term), along
with an additional XOR function can be considered as a Generalized Toffoli
gate.

There were algorithms developed in the past, for mapping switching func-
tions to Cellular Array (CA) architectures and then minimizing the number of
the produced complex terms. References [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14] and [15] are some examples of the overall progress performed in this field.
The state of the art in finding minimal (exact) solutions for ESCT expressions
for up to 6 input variables is [15]

In this paper, we introduce an algorithm (W7XMIN) that can produce min-
imal expressions (the ones with the least number of complex terms) for a single-
output switching function f with up to 7 complex terms. To the best of the
authors knowledge, this is the first algorithm in the related literature, that can
find minimal ESCT expressions for switching functions of up to 7 complex terms,
regardless of the number of input variables. Hence, this paper adds, somehow,
to the state of the art in exact ESCT minimization. Moreover, a heuristic ex-
tension (EW7MIN) is presented which is more efficient than W7XMIN, giving
practically the same results. Lastly, EW7MIN is used as the basic simplifi-
cation module in Min2 [12], resulting in heuristic algorithm MIN2-EW7MIN.
Min2 can be used in conjuction with the characteristic function [14] for min-
imizing multi-output Boolean functions. The results of MIN2-EW7MIN for
multi-output functions are comparable or better to the ones in the bibliogra-
phy.
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2 Theoretical background

In this section we provide some background definitions. An expression of a
switching function suitable for mapping to a Maitra cascade (cell chain) is called
a Maitra term. A more formal definition[2] follows:

Definition 1 A complex Maitra term (complex term or Maitra term for sim-
plicity) is recursively defined as follows:

1. Constant 0 or 1 Boolean function is a Maitra term.

2. A literal is a Maitra term.

3. If Mi is a Maitra term, x∗ is a literal, and G is an arbitrary two-variable
Boolean function (Maitra cell), then Mi+1 = G(x∗,Mi) is a Maitra term.

Additionally, it is required that each variable appears in each Maitra term only
once. In other words a complex term is: P = Gn(x∗n, Gn−1(x∗n−1, . . . G1(x∗1, 0))),
where x∗i are literals and xi are the variables that P depends on. It is noted that
in this previous definition x∗i does not need to be in its negative form, since for
every single output two variable Boolean function Gn(x, y), there exists another
single output two variable Boolean function G

′
n such that: Gn(x, y) = G

′
n(x̄, y).

Definition 2 An ESCT (Exclusive-or Sum of Complex Terms) expression (some-
times also called Maitra expression) for a switching function, is a XOR sum of
complex terms:

f =
m∑

i=1

⊕Mi,

where Mi are complex terms and m (size of the ESCT expression) is their num-
ber inside the expression. The same variable ordering is used for every Mi.

It can be observed that a complex term defines a specific variable ordering
for its variables. For P , xn is the most significant variable and x1 is the least
significant (xn, xn−1, . . . , x2, x1 is the order of variable significance). If the vari-
able ordering changes then, it is possible that the new expression produced may
not be a complex term.

Definition 3 A minimal (or exact) expression of a switching function f(x1, . . . , xn)
of n variables, is defined as the ESCT expression which has the least number of
terms comparing to every other ESCT expression for this function.

Definition 4 The ESCT weight w(f) (or simply weight) of a switching function
f(x1, . . . , xn) of n variables, is defined as the number of complex terms in a
minimal ESCT expression of f .

Definition 5 An n-wequivalent ESCT expression of a Boolean function f is an
ESCT expression of f which has weight equal to w(f) + n.

An ESCT expression can be directly mapped to a special cellular archi-
tecture, called Reversible Wave cascade (Fig. 1). A complex (Maitra) term is
mapped to a column in the reversible wave cascade, excluding the last XOR cell.
Each column is composed of cells (rij , 1 ≤ i ≤ n, 1 ≤ j ≤ m). The horizontal
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Table 1: Cell index set
Cell index(r) Fr(x, y)

1 x + y
2 x + y
3 xy
4 xy
5 x⊕ y
6 y

input to each cell is a variable and is propagated to the horizontal output of the
cell. The vertical input is the output of the previous cell in the same column (or
the constant 0 in the case of the first cell of each column). The outputs of each
column are connected to the XOR collector, thus obtaining the function F (x).
Every such cell implements a single output two variable switching function (this
function corresponds to the Maitra cell of Definition 1).

It has been proved [16] that a Maitra cell doesn’t need to implement every
two-variable switching function. A set of only six functions is sufficient (com-
plete set). Of course, there are many equivalent such sets[17]. We have adopted
(in the rest of the paper) one of them which can be seen in Table 1.

An ESCT expression is composed of reversible Generalized Toffoli gates [2],
thus a Reversible Wave Cascade, as its name suggests, is a reversible architec-
ture.

2.1 Representation

Next, we will present the definitions of the representation used in this paper,
for an arbitrary Boolean function and an arbitrary ESCT expression.

Definition 6 The minterm representation (MT) of a switching function f with
n variables, is a bitvector of size 2n where the i-th bit is 1 if the i-th minterm
of f is 1.

It can easily be observed that the MT representation of a Boolean function
depends on its assumed variable ordering.

For the rest of this paper, the MT representation of a Boolean function will
be enclosed in brackets and will be displayed using hex digits. The hexadecimal
notation is used in place of the binary one, in order to improve the readability
of the paper.

A complex term is characterized by its cells, since its first input is the con-
stant 0. Therefore, we can represent it by a series of cells.

Definition 7 The cell representation of a complex term, is a series of numbers,
corresponding to the series of indices of Maitra cells (Table 1) that belong to
the complex term. The leftmost cell corresponds to the cell with the constant
input 0 (corresponds to the least significant variable of the complex term) and
the rightmost to the one closest to the XOR collector (corresponds to the most
significant variable of the complex term).
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For the rest of this paper the cell representation of a complex term will be
enclosed in parenthesis (as opposed to the minterm representation, which is
enclosed in brackets).

Every Boolean function can be expressed with the help of its subfunctions
(they are defined below) through relations, known as Boolean decompositions
(or expansions). The Boolean decompositions form the backbone of our theo-
retical approach for the minimization of Boolean functions.

Definition 8 Let f(x) be a switching function and x the vector of its variables.
Let xi be one of the variables in the vector x. Then f(x1, x2, . . . , xi = 0, . . .),
f(x1, x2, . . . , xi = 1, . . .) and {f(x1, x2, . . . , xi = 0, . . .) ⊕ f(x1, x2, . . . , xi =
1, . . .)} are subfunctions of f , regarding variable xi. For simplicity, in the rest
of this paper, they will be referred as f0, f1 and f2 respectively and xi will be
referred as x.

A Boolean function f can be expressed as (Shannon, Positive Davio and
Negative Davio respectively):

• f(x) = x̄f0 ⊕ xf1

• f(x) = xf2 ⊕ f0

• f(x) = x̄f2 ⊕ f1

The next definition defines the generator tree, which will be used later by
our minimization algorithms.

Definition 9 Let f be an n-variable switching function. By creating the sub-
functions f1, f0, f2 of f and then the subfunctions of f ’s subfunctions and so on
(recursively), a ternary tree is generated. The leftmost branch of each subtree
represents the f1 subfunction of the subtree’s root, the middle one represents the
f0 subfunction and the rightmost represents the f2 subfunction. This decompo-
sition is applied until the constant 0 or 1 function is encountered or a leaf (a
two variable Boolean function) is obtained. This tree is named the generator
tree.

It was proved in [13] that if P is a complex term, then P , P ⊕ x and P ⊕ x
are also complex terms, where x is the most significant variable of P . Hence,
the ESCT weight of an arbitrary function f is equal to the weight of f , f ⊕ x
and f ⊕ x.

3 ESCT Theoretical Background

The following theorems give the theoretical background for the algorithms pre-
sented in the next section.

Definition 10 An mequivalent expression (F2) of an ESCT expression (F1 =
. . . ⊕ Pi ⊕ . . . ⊕ Pj ⊕ . . .) for a switching function f(x1, . . . xn) (xn is its most
significant variable) is an expression produced by applying the following trans-
formations to F1:

• F2 = . . .⊕ Pi ⊕ . . .⊕ Pj ⊕ . . ..
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• F2 = . . .⊕ (Pi ⊕ x∗n)⊕ . . .⊕ (Pj ⊕ x∗n)⊕ . . ., where x∗n = xn, xn.

The above transformations can, also, be applied to pairs of descendants of f
in its generator tree.

For example if F1 = (1234) ⊕ (2343), then an mequivalent expression of
F1 by complementing both terms, is: F2 = {(1234) ⊕ 1} ⊕ {(2343) ⊕ 1} =
(2412)⊕ (1121).

Lemma 1 (Two cell merging) The relation
Fr1(x, y1)⊕ Fr2(x, y2) = Fr(x, y1 ⊕ y2), where y1 6= y2, y1 6= ȳ2 and x the most
significant variable of complex terms Fr1 , Fr2 , Fr

is true iff:
(r1, r2, r) = (1, 1, 3), (1, 3, 1), (2, 2, 4), (2, 4, 2), (3, 3, 3),
(4, 4, 4), (5, 5, 6), (5, 6, 5), (6, 6, 6)
Proof. It can, easily, be proved exhaustively.Q.E.D.

Theorem 1 Each minimal expression of a switching function f can always be
written in one of the following compact forms:

f = Fp(xn, y) (1)

(with one subfunction constant)
OR

f = Fp(xn, y)⊕ Fq(xn, z) (2)

OR
f = Fp(xn, y)⊕ Fq(xn, z)⊕ Fr(xn, g) (3)

and fi = y⊕g∗, fj = z⊕g∗, fk = y⊕z∗, fi, fj , fk = f0, f1, f2, g
∗ = g, ḡ, z∗ = z, z̄.

The valid combinations of cell indices and their corresponding inputs are
presented in [12].

Proof. It has been proved in [12].Q.E.D.

For example, a minimal expression for f(x1, . . . , x5) = [A7122347] is: f =
(13443)⊕(11344)⊕(26654)⊕(61166)⊕(12616) or in its compact form: F3(x5, (1344))⊕
F4(x5, (1134)⊕ (2665))⊕ F6(x5, (6116)⊕ (1261)).

Algorithm Min1 was presented in [12] and it was able to find exact ESCT
expressions for functions of up to five input variables. It did that by decom-
posing its input function, thus creating the generator tree. For each function,
corresponding to a node of this tree, it produced minimal ESCT expressions
by merging common complex terms between minimal expressions belonging to
the functions that corresponded to its leaves. To do that it needed all mini-
mal ESCT expressions for each node of the generator tree. But for functions
with weight more than 5 it was not, always, able to produce minimal ESCT
expressions or produce every possible minimal ESCT expression. Consider the
following example:

Example 1 Consider the following 5-input single output Boolean function (given
in MT formulation): g = [19cd0acc]. Each term, inside the ESCT expressions
of this example, will be expressed using both the MT formulation and the cell
representation. The weight of g is equal to 5 and a minimal ESCT expres-
sion for g is: [00220022]⊕ [09000000]⊕ [00000a00]⊕ [000000ee]⊕ [10ef0000] =
(13636)⊕ (25344)⊕ (16343)⊕ (11633)⊕ (11254).
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But this expression cannot be produced by Min1, because this algorithm finds
only some minimal ESCT expressions for 5 input Boolean functions. Although
this fact does not seem important, it becomes important if we try to mini-
mize, using Min1, the function: f = [a75842a6be95486a] (function g is a sub-
function of f). A minimal ESCT expression of f is: [0000000000220022] ⊕
[0000000009000000]⊕[7777888877778888]⊕[0808080808080808]⊕[00000a0000000000]⊕
[000000ee00000000] ⊕ [10ef000000000000]=(136364) ⊕ (253344) ⊕ (146656) ⊕
(614666) ⊕ (163434) ⊕ (116334) ⊕ (112544). This expression is produced by
an ESCT expression of f0 and by an ESCT expression of f2 = g by merging
two common complex terms ([00220022] and [00090000]) to create the terms
[0000000000220022], [0000000009000000] which are shown in the above expres-
sion. Min1 is able to produce the appropriate ESCT expression [00220022] ⊕
[09000000]⊕ [f807f807]⊕ [4fb0b04f ]=(13636)⊕ (25334)⊕ (22356)⊕ (24255) for
f0.

But since Min1 cannot produce all minimal ESCT expressions for g = f2 it
cannot produce the minimal ESCT expression for f .

Cases, like the one presented in example 1, are considered in the theoretical
results that follow.

3.1 Minimization Theorems

Theorem 2 Let f a Boolean function with w(f) < 6 and f0, f1, f2 its subfunc-
tions. All minimal ESCT expression for f can be found from the minimal ESCT
expressions of f0, f1, f2.

This Theorem denotes that all possible ESCT expressions for f can be pro-
duced.

Theorem 3 Let f a Boolean function with 5 < w(f) < 8 and f0, f1, f2 its
subfunctions. At least one minimal ESCT expression for f can be found from
the minimal ESCT expressions of f0, f1, f2.

This previous theorem cannot produce all minimal solutions in every possible
case.

4 The Minimizing Algorithms

Algorithm W7XMIN implements the theorems and the methodology presented
in the previous section. It is an extension of algorithm Min1 [12] and it’s recur-
sive. It decomposes its input function into its subfunctions creating its generator
tree. The composition method is identical to that of Min1 but in certain cases
and weight combinations, as depicted by Table 2, it implements the method-
ology described in the previous section. At every level of the decomposition
it creates ESCT expressions, using the Shannon, Positive and Negative Davio
expansions, along with their mequivalents.

For example, let’s suppose that W7XMIN needs to create the minimal ESCT
expressions of a node (corresponding to function f) inside the generator tree of
its input function. Let’s suppose that the children of this node (corresponding
to f ’s subfunctions) have weights: w(f0) = 4, w(f1) = 2, w(f2) = 4. Then
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according to Table 2 this weight combination can only mean that w(f) = 5
or 6. Moreover it must be w(g) = 1. There are two pairs of functions to be
considered: (f0, f1), (f2, f0) that correspond to weight combination (4, 2). For
the first pair W7XMIN will create and minimize functions: f0⊕g, f1⊕g where g
is one complex term from the minimal expressions of f1, f0 respectively. For the
second pair W7XMIN will create and minimize functions: f2⊕g, f1⊕g where g
is one complex term from the minimal expressions of f1, f2 respectively. From
the minimal ESCT expressions of functions g, f0 ⊕ g, f1 ⊕ g, f2 ⊕ g W7XMIN
will create expressions for f and will evaluate their size, adjusting the weight of
f as necessary.

Another algorithm was constructed (EW7MIN) as a heuristic extension of
W7XMIN. Algorithm EW7MIN differs from W7XMIN at one point. It only
produces mequivalent expressions at those levels of the generator tree where
there is at least one constant function equal to one. This is justified by the
fact that, according to Theorem 1, when there are no constant subfunctions
inside the generator tree of a boolean function f then there is always at least
one minimal ESCT expression of f having Maitra cells only 3,4,6. This kind
of Maitra cells is produced by the Shannon and Davio expansions and they are
not normally produced by the mequivalent transformations. Even if there are
constant subfunctions but they are equal to zero then there is at least one min-
imal ESCT expression having, only, Maitra cells 3,4,6. But when a subfunction
is constant and equal to 1, then Maitra Cells 1,2,5 will be created (these Maitra
cells are normally created by the mequivalent transformations). In these cases
we create the additional mequivalent expressions.

Moreover, algorithm Min2 [12] has been modified in order to use EW7MIN
as its term transformation and minimization algorithm. The new and improved
Min2 algorithm is called Min2-EW7MIN and can be used for Boolean functions
that are so complicated that even EW7MIN timeouts. Min2-EW7MIN is an
iterative algorithm that starts from an initial ESCT expression of an arbitrary
Boolean function and uses EW7MIN in groups of complex terms. Each such
group is minimized and reinserted into the starting ESCT expression. Min2-
EW7MIN is terminated after a predetermined number of iterations.

5 Conclusions

The theoretical background for finding minimal ESCT expressions for arbitrary
Boolean function with ESCT weight at most 7 is presented in this paper. Algo-
rithm W7XMIN will be constructed based on it as well as algorithm EW7MIN
which is a heuristic extension of the first one. This algorithm , although
heuristic, may produce very good results, while keeping the basic minimiza-
tion methodology of W7XMIN, almost, intact. Then we can use this algorithm
as a module for iterative minimizer Min2-EW7MIN.
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