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Abstract

In this paper the problem of decomposition, mapping and minimiza-
tion of multi-output boolean functions is discussed. First the mathemati-
cal formulation for single-output boolean functions is presented and then
it is extended to multi-output functions. The proposed formulations use
function decompositions, ETDDs (EXOR ternary decision diagrams) and
multi-valued logic.

1 Introduction

All logic circuits are governed by the rules of boolean logic. Although the
recent advancements in the field of VLSI (Very Large Scale Integration) helped
to create better circuits (faster, smaller and with less heat dissipation), the
technical boundaries imposed by the limitations of the technology are starting
to become obvious. This is the reason why the research in the field of boolean
logic problems is a hot scientific topic.

One of the most important boolean problems is the effective decomposition
and minimization of a boolean (switching) function. This function may have
many input variables and many outputs. Every such function can be expressed-
decomposed in many different ways (Ashenhurst[1], Curtis[2], Roth and Carp[3]
did pioneering work on this field).

A significant kind of expressions for a boolean function are the so-called Ex-
clusive or Sum Of Products (ESOP) expressions. They are so important because
they can easily be mapped to standard commercial architectures (like FPGAs -
Field Programmable Gate Arrays) and furthermore they can be described and
analyzed using mathematical terms. Other similar expressions are the Sum Of
Products (SOP) expressions. For an n-variable function, the upper bound in
the number of product terms of ESOPs is 29 · 2n−7, n > 6 [18] as opposed to
2n−1 for SOPs. Morevover, XOR gates have excellent testabillity properties.
This is the reason why ESOP expressions are considered to be more important
than SOP. Finally the problem of minimizing an ESOP expression of a boolean
function, in its most general form (regarding a function with arbitrary number
of input variables and number of outputs), is known to be an NP-hard problem.
The problem has been solved in the past for special cases regarding the number
of input variables and outputs and the number of produced terms [18].



The physical evolution in the theory of ESOP is to create expressions using
different kind of terms (more complex). In this work the terms used are called
complex terms (or Maitra terms). The expressions produced are called Exclusive
or Sum of Complex Terms (ESCT). The main advantage of the ESCT expres-
sions over ESOP is that they contain fewer number of terms (and therefore lead
to smaller and better logic circuits). Another interesting property is that they
can easily be mapped to architectures that are considered reversible [6], there-
fore they can be used to create circuits with less heat dissipation. They even
can be used in quantum computing [6]. The disadvantage is that the effective
decomposition and minimization of ESCT expressions seems to be even more
difficult than the corresponding one using ESOP expressions.

The problem of decomposing a boolean function to the exclusive-or sum of
ESCT functions and to find a near minimal ESCT expression for it has been
addressed in the past [6, 7, 8, 9, 10, 11, 14, 15] for single-output functions.
In Ref [16] two algorithms (regarding single-output boolean functions) were
presented for minimizing the number of complex terms in an ESCT expression.
The first one guaranteed minimality for functions up to 5 variables. The second
algorithm applied the first one on groups of complex terms, inside the cellular
array, as a complex term transformation operation. The previous algorithm has
been improved in Ref [17] with the introduction of relative complex terms and
equivalent ESCT expressions.

In this work a mathematical formulation is presented (regarding the exten-
sion of the algorithms and methods presented in [16] and [17]) for multi-output
switching functions.

2 Theoretical background

In this section we provide some background definitions.

Definition 1. A boolean function with n-input variables and m-outputs (multi-
output function) is a mapping: f : {0, 1}n → {0, 1}m. Variables x1, . . . , xn are
called the support of f . If m = 1 then f is a single-output boolean function.
Generally a multi-output boolean function can be considered as m different
single-output functions.

Definition 2. A subfunction fi, i = 0, 1, 2 of a boolean function f(x1, . . . , xn),
regarding variable x1 of f ’s support is defined as:

• f0 = f(0, x2, . . . , xn)

• f1 = f(1, x2, . . . , xn)

• f2 = f0 ⊕ f1

Definition 3. Let xi be binary variable literals, y a binary value (constant
input) and Gi arbitrary 2-input 1-output boolean functions (1 ≤ i ≤ n). Then
U = Gn(xn, Gn−1(xn−1, Gn−2(xn−2, . . . , G1(x1, y)))) is an n-variable complex
term (or Maitra term) that depends on variables x1, . . . , xn. Functions Gi will
be called the ESCT cell functions of the term.



A product term is a special case of a complex term where the Gi(x, y) func-
tion may be of the form: xy, x̄y, xȳ,̄ xȳ, x, y, 0, 1. If the last four cases are not
allowed then the product term is actually a minterm.

Definition 4. An Exclusive or Sum of Complex Terms expression (ESCT ex-
pression or Maitra expression) for a switching function f is an exclusive-OR
sum of complex terms:

f =
m∑

i=1

⊕Mi,

where m is the number of complex terms. All complex terms Mi inside the
expression have the same variable ordering.

In the previous definition, if instead of complex terms, we use product terms,
then the produced expression is called an Exclusive or Sum Of Products (ESOP)
expression.

Definition 5. A minimal (or exact) expression of a single-output switching
function f(x1, . . . , xn) of n variables, is defined as the ESCT expression which
has the fewest number of complex terms comparing to any other ESCT expres-
sion for this function.

The same definition applies for multi-output boolean functions but in this
case different outputs may share common terms, in order to reduce the overall
weight.

Definition 6. The weight w(f) of a switching function f(x1, . . . , xn) of n vari-
ables is defined as the number of complex terms in a minimal expression of
f .

It has been proved in [16] that the complement of a complex term is also a
complex term, therefore for a boolean function f : w(f) = w(f̄).

Definition 7. The minterm(MT) representation of an n variable switching func-
tion f is a 2n bit vector where the ith bit is 1 if the ith (its binary representation
equals i) minterm of f is 1.

For example the MT formulation of f(x1, x2, x3, x4) = x1x2x3x4 is [8000].
The MT formulation of f = x1x2x3x4 ⊕ x̄1x̄2x̄3x̄4 is [8001], where the numbers
are hexadecimal.

Table 1: ESCT cell function index set

Cell index(r) Fr(x, y)
1 x + y
2 x + y
3 xy
4 xy
5 x⊕ y
6 y
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Figure 1: Reversible wave cascade CA

An ESCT expression can be directly mapped to a reversible wave cascade
cellular architecture(Fig. 1).

It has been proved [5] that an ESCT cell function doesn’t need to belong
to the complete set of every two-variable switching function. A set of only six
functions is sufficient (complete set). Of course there are many equivalent such
sets[13]. We have adopted (in the rest of the paper) one of them which can
be seen in the Table 1. The complex terms that use such a complete set for
function G are called restricted complex terms [5]. From this point on, without
loss of generality, when we mention complex terms, we will refer to restricted
complex terms.

For single-output boolean functions, we adopt the assumption that the first
input (y in Definition 3) of every complex term is the constant 0. Therefore a
complex term is characterized by its ESCT cell functions, so we can represent it
by a series of indexes (using the corresponding index shown in table 1), utilizing
three bits per each. For example function f(x1, x2, x3, x4) = (x1 ⊕ x2)x3 + x4

has weight 1. Using functions from the previously defined cell set, it can be
represented as: (1541) or in bits: (001101100001).

In the rest of this paper, we will declare a complex term representation of a
function by enclosing it in parenthesis.

Definition 8. Let X be variable that takes a value from V = {0, . . . , v − 1}
and S ⊆ V . Then XS is a literal of X such as XS = 1 when X ∈ S and XS = 0
when X ∈ V \S.

Definition 9. Let XS1 , XS2 be two literals of variable X. Then XS1 ⊕XS2 ≡
X(S1∪S2)\(S1∩S2).

Definition 10. A multi-valued input, binary output function f is a mapping
f : V1 × V2 × · · · × Vn → {0, 1}, where Vi = {0, . . . , vi − 1}.

In this paper we examine mappings of the form f : {0, 1} × · · · × {0, 1} ×
{0, . . . , v − 1} → {0, 1}.



The weight of a multi-valued switching function is defined in accordance to
Definition 6. The subfunctions of a multi-valued boolean function f , regarding
a binary variable of f ’s support, are also identical to the ones in Definition 2.

Definition 11. The multiple value minterm (MVMT) formulation m of an
(n + 1)–variable function f : {0, 1} × · · · × {0, 1} × {0, . . . , v − 1} → {0, 1} is a
2n+dlg(v)e bit vector. Let x

{a1}
1 · · ·x{an}

n XS be a cube of f , where ai ∈ {0, 1}
and S ⊆ {0, . . . , v − 1}. Let p1 be equal to the binary number < a1, . . . , an >
and p2 = 2dlg(v)e. O is a bit vector of size p2 whose i–th bit is 1 if i ∈ S. Then,
bits [(p1 · p2 + p2 − 1)..(p1 · p2)] of the MVMT m are equal to O.

For example let f : {0, 1}4×{0, . . . , υ−1} → {0, 1}. Intuitively, the MVMT
of f can be seen as the interleaving of υ MTs of 4-variable functions fi, where
fi = f(x1, x2, x3, x4, i). Let fi = [d3d4], [c1d5], [d1cf ], ], [d5cb], [c13b] for i =
0, 1, 2, 3, 4 respectively. Then the MVMT of f is [1f1f000d0008011f0f0f10131c071c1e].
More specifically (in terms of bits): f0 = [d3d4] = [1101− 0011− 1101− 0100],
f1 = [c1d5] = [1100 − 0001 − 1101 − 0101], f2 = [d1cf ] = [1101 − 0001 −
1100 − 1111], f3 = [d5cb] = [1101 − 0101 − 1100 − 1011], f4 = [c13b] =
[1100− 0001− 0011− 1011]

The last two digits of the MVMT (1e) are produced by using the last digits
of the MT formulations of f4, f3, f2, f1, f0 and padding with zeros until size:
2dlg(5)e = 8. So we use 3 zeros and then the last digits of f4, f3, f2, f1, f0. Thus:
(000)(11110)=[1e]. The rest of the digits of MVMT are produced using similar
arguments.

In the rest of this paper we will declare a MT or MVMT representation of
a function by enclosing it in brackets.

Definition 12. Let xi be binary literals, y takes a value from {0, . . . , v − 1},
Gi (2 ≤ i ≤ n) is an arbitrary boolean function {0, 1} × {0, 1} → {0, 1}
and G1 is an arbitrary mapping {0, 1} × {0, . . . , v − 1} → {0, 1}. Then U =
Gn(xn, Gn−1(xn−1, Gn−2(xn−2, . . . , G1(x1, y)))) is a mv-term.

An mv-term can be represented using its MVMT formulation. Alternatively
it can be represented as a normal complex term (a series of ESCT cell functions
- we will call this the 2v-term) along with a multi-valued variable (this variable
will be the y input in Definition 3 - we will call it the mv-var). For example
mv-term ({3}434) = yx1x2x3 (y multi-valued, x1, x2, x3 binary variables) has
2v-term (434) and mv-var: 3. Its MVMT representation is: [00300000].

The complement of a mv-term (like the complement of a complex term) is
also one mv-term and has complemented 2v-term and complemented mv-var.

2.1 Decompositions

Every boolean function can be expressed with the help of its subfunctions
through relations known as boolean decompositions (or expansions).

Definition 13. Let f(X) be a switching function and X the vector of its vari-
ables. Let x1 be one of the variables in the vector X. Then, f(x1 = 0, x2, . . .),
f(x1 = 1, x2, . . .) and {f(x1 = 0, x2, . . .)⊕f(x1 = 1, x2, . . .)} are subfunctions of
f , regarding variable x1. For simplicity, in the rest of this paper, we will refer to
f(x1 = 1, x2, . . .) as f1, to f(x1 = 0, x2, . . .) as f0, to {f(x1 = 0, x2, . . .)⊕f(x1 =
1, x2, . . .)} as f2 and to x1 as x.



A boolean function f can be expressed as:
f(X) = x̄f0 ⊕ xf1, f(X) = xf2 ⊕ f0, f(X) = x̄f2 ⊕ f1 (Shannon, positive

Davio, negative Davio). Those expressions are valid even if boolean function f
has a multi-valued variable, as long as the variable used for the decomposition
is binary.

A switching function f can be decomposed using expansions, different than
Shannon and Davio. Those are presented in Theorem 1.

Theorem 1 (New Decompositions). Given a Boolean function f(X), where X
is the vector of the function’s variables, and a variable x of this vector, we can
express f as:

f(X) = (x + f2)⊕ (x⊕ f1) (1)

f(X) = (x + f0)⊕ (xf̄1) (2)

f(X) = (xf̄2)⊕ (x⊕ f0) (3)

f(X) = (x + f̄0)⊕ (x̄ + f̄1) (4)

f(X) = (x̄ + f̄2)⊕ f̄0 (5)

f(X) = (x + f̄2)⊕ f̄1 (6)

f(X) = (x̄f̄2)⊕ (x⊕ f̄1) (7)

f(X) = (x̄f̄0)⊕ (x̄ + f1) (8)

f(X) = (x̄ + f2)⊕ (x⊕ f̄0) (9)

Proof. We will prove that the above rules are equivalent to the SHANNON
expansion.

For (1) it holds: f = [x + f2] ⊕ [x ⊕ f1] = [x̄f̄2] ⊕ [x ⊕ f1] = [x̄(f1 ⊕ f̄0)] ⊕
[x⊕ f1] = x̄f̄0 ⊕ x̄f1 ⊕ x̄⊕ f1 = x̄f0 ⊕ xf1

For (2) it holds: f = (x+f0)⊕(xf̄1) = x̄f̄0⊕xf̄1⊕1 = x̄f̄0⊕xf̄1⊕(x⊕ x̄) =
x̄f0 ⊕ xf1

For (3) it holds: f = {xf̄2} ⊕ [x⊕ f0] = x(f0 ⊕ f̄1)⊕ x⊕ f0 = x̄f0 ⊕ xf1

Cases 4, 5 and 6 are the Shannon, and Davio expansions when we comple-
ment each term. Cases 7, 8, 9 are derived from cases 1, 2 and 3, respectively,
if we complement each term. Q.E.D.

Based on the previously described decompositions two algorithms (Min1 and
EMin1) for decomposing and minimizing single-output switching functions have
been presented in [16] and [17] respectively.

Lemma 1. The relation
Gr1(x, y1) ⊕ Gr2(x, y2) = Gr(x, y1 ⊕ y2), where Gi are ESCT cell functions, x
is a binary variable and y1 6= y2, y1 6= ȳ2

is true iff:
(r1, r2, r) = (1, 1, 3), (1, 3, 1), (2, 2, 4), (2, 4, 2), (3, 3, 3),
(4, 4, 4), (5, 5, 6), (5, 6, 5), (6, 6, 6)
Proof. The above lemma can easily be proved exhaustively. Q.E.D.

It is important to note that the above lemma holds even if y1, y2 are mv-
terms (it can easily be proved).

If y1 = y2 or y1 = y2 then y1 ⊕ y2 and consequently Fr(x, y1 ⊕ y2) are
reduced to one complex term[16]. The above lemma shows that we can merge
any number of index 1 or 3 ESCT cell functions to one ESCT cell function of
index 1 or 3 and the same principle applies to ESCT cell functions of index 2,4
and 5,6.
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Figure 2: 1st algorithm multi-output architecture

3 Multi-output formulation

The previous theoretical results have been generalized for multi-output switch-
ing functions. Two different formulations will be presented. In all these the
multi-output function is transformed into a new switching function (we will call
it the characteristic function), which is the function that eventually will be min-
imized. From the minimal (or near minimal) expressions of the characteristic
function, we can, easily, obtain the corresponding minimal (or near minimal)
expressions for the starting multi-output switching function. In the following
sections we will represent the starting multi-output function as f and its corre-
sponding characteristic function as g (For convenience we will use bold fonts for
multi-output functions and normal for single-output functions). We will ana-
lyze the process used to create the characteristic function (it is different in every
approach) and present the proposed architecture (where necessary).

3.1 First Formulation

Let f(x1, . . . , xn) = {f0, f1, ..., fm−1} be the n-input, m-output switching func-
tion to be minimized (f i, i = 0 . . . (m− 1) are the corresponding outputs of f).
In this approach the characteristic function (g) will be a (n + dlogme)-input,
1-output switching function described as:

g(x1, . . . , xn, y1, . . . , ydlogme) = f i, i =
j≤dlogm−1e∑

j=0

yj2j (10)

A circuit representation of this architecture is shown in Figure 2.
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In order to decompose and minimize the characteristic function g, we use any
single-output function minimization algorithm, since g is really a single-output
function although it has more input variables, when compared to the original
multi-output function. From the expressions of g we can acquire the correspond-
ing expressions for the outputs f i by setting the input variables y1, . . . , ydlogme
to the corresponding value, according to equation 10.

The first architecture presented in Figure 2 has a small disadvantage. We
can acquire only one of the m possible outputs at any given time (we can’t have
all the possible outputs at the same time). To overcome this limitation we can
transform that architecture to the one shown in Figure 3. This transformation
does not add any additional columns to the architecture and it is very simple.
It was shown before that in order to produce a specific output (suppose output
z) from the architecture in Figure 2, we must set inputs y1, . . . , ydlogme to the
appropriate constant value. It is easy to prove that if inputs y1, . . . , ydlogme are
set to a specific value then the output value of a cascade Li will be 0,1,Ki or
Ki (refer to Figure 2). We have the following cases:

• If Li = 0, 1, then this cascade is not used for output i. Therefore cell
Hiz will be of index 6(Figure 3). If Li = 1 then the output must be
complemented, thus we change the initial input of the horizontal cascade
z from 0 to 1 and vice versa (in order to complement the output).



• If Li = Ki,Ki, then cell Hiz will be of index 5 (in order to combine the
output Li of this cascade with the ones of the other cascades to produce
the output). If Li = Ki, we also complement the initial input of the
horizontal cascade (just like in the previous case).

3.2 Second formulation

In this case the characteristic function is produced as the interleaving of the
MT representations of f’s outputs, according to definition 11. In this case g has
the same number of input variables with f but the first variable is considered
multi-valued.

The expressions that will be produced from the decomposition and minimiza-
tion of g will be composed of mv-terms. All 2v-terms (of their corresponding
mv-terms) in the final expression are used to produce the minimal expressions
for each output (in the previous case some of them were used) but their initial
constant input is different (for some inputs it may be one and for others it may
be zero). This is declared by the multi-valued variable.

In this architecture we can’t have every output produced at the same time.
For the decomposition and minimization of the characteristic function we can

easily extend (in a heuristic manner) the single-output minimization algorithm
Min1[16]. Equal mv-terms are considered those that have equal mv-vars and 2v-
terms and complemented are considered those that have complemented mv-vars
and 2v-terms.

4 Conclusions

The main contribution of this paper can be summarized as follows:

1. Two mathematical formulations for the decomposition and minimization
of multi-output boolean functions are presented, as extensions of the meth-
ods presented in [16] and [17] (they concerned single-output functions).

2. An extension of the complex term to the mv-term has been presented,
which is a complex term having its initial constant input multi-valued.
This can be used to create expressions for boolean functions with their
first variable multi-valued.
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