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Abstract1: This paper presents a hardware 
implementation of the Pan and Tompkins QRS 
detection algorithm, described in Verilog HDL 
(Hardware Design Language). The generated source 
has been simulated for validation, synthesized and 
tested on a Xilinx FPGA (Field Programmable Gate 
Array) board using the European ST-T database. To 
the best of the authors’ knowledge this is the first 
attempt for the hardware implementation of the Pan 
and Tompkins QRS detection algorithm, in 
reconfigurable FPGA boards. The generated 
hardware achieves a speed up of 250% compared to 
the software implementation. Given that and the 
vital importance of a fast and accurate QRS 
detection, the hardware implementation seems a 
promising approach. 
 
Introduction 
 

The QRS detection algorithm introduced by Pan and 
Tompkins [1] is the most widely used and often cited 
algorithm for the extraction of QRS complexes from 
electrocardiograms. The methodology followed is that 
the ECG is passed through a low-pass and a high-pass 
filter in order to remove noise from the signal. Then the 
filtered signal is passed through derivative, squaring and 
window integration phases. Finally, a thresholding 
technique is applied and the R-peaks are detected. 

This work presents the hardware implementation of 
the Pan-Tompkins algorithm. The Verilog [2] hardware 
description language has been used. The building blocks 
and the actual implementation were designed, tested and 
evaluated using the ISE tool available from Xilinx [3].  

The comparison of our hardware implementation 
with an equivalent software approach showed that the 
necessary clock cycles are significantly less for the 
hardware implementation. 

                                                 
1 This work is co - funded by the European Social Fund and     
particularly the Program “Pened 2003”. 

The rest of the paper is structured as follows. The 
following section outlines some interesting QRS 
detection algorithms and describes in more detail the 
one proposed by Pan and Tompkins. The next chapter 
presents the general architecture of the proposed system, 
while implementation details are given in the next two 
chapters. The final section summarizes this work. 
 
QRS Detection Algorithms 
 

Several QRS detection algorithms have been 
proposed in the literature [22], [23]. Algorithms [4], [5] 
and [6] are based on the amplitude and the first 
derivative. In [4] a point is classified as QRS candidate 
when three consecutive points of the first derivative 
exceed a positive threshold (ascending slope) followed 
within the next 100ms by two consecutive points which 
exceed a negative threshold (descending slope). Fraden 
and Neuman [5] developed a QRS detection scheme 
where a threshold is calculated as a fraction of the peak 
value of the ECG. Gustafson [6] suggested that a point 
is a QRS peak candidate when the first derivative and 
the three next derivative values exceeds a threshold and 
the next two sample points have positive slope 
amplitude products.  

Algorithms [7] and [8] are based on the first 
derivative only. In [7] the first derivative is calculated 
by a given formula and the slope threshold is calculated 
as a fraction of the maximum slope for the first 
derivative. In [8] the derivative and the derivative of the 
next three points should exceed the threshold. 

Algorithms [9] and [10] are based on the first and 
second derivatives. Balda [9] suggested searching 
values exceeding the threshold in a weighted summation 
of the first and second derivative. Ahlstrom and 
Tompkins in [10] proposed that the absolute values of 
the first derivative are smoothed and added with the 
absolute values of the second derivative. Two thresholds 
are used, a primary and secondary one. A point is 
candidate for QRS peak point when the primary 



threshold is exceeded and the secondary threshold is 
exceeded for the next six consecutive points. 

Algorithms [11] and [12] are based on digital filters. 
Apart from the above referenced papers, a more detailed 
description of those ([4]-[12]) algorithms can be found 
in [13].  

QRS detection algorithms have been proposed by 
our research group based on the length transformation 
and on syntactic methods [14], [24], [25], [26], [27],  
[28]. These algorithms calculate the length and energy 
signals of the ECG and identify peaks using variations 
and thresholds in these signals. Relative work which 
proposes alternative approaches to QRS detection 
includes [15-20]. 

 
Pan & Tompkins QRS detection algorithm  
 

One of the most popular QRS detection algorithms, 
included in virtually all biomedical signal processing 
textbooks, is that introduced by Pan and Tompkins in 
[1]. An overview of the algorithm follows. Figure 1 
shows a graphical representation of the basic steps of 
the algorithm. 

 

 
Figure 1: A graphical representation of the algorithm. 
The signal passes through filtering, derivation, squaring, 
and integration phases before thresholds are set and 
QRS complexes are detected   

 
In the first step the algorithm passes the signal 

through a low pass and a high pass filter in order to 
reduce the influence of the muscle noise, the power line 
interference, the baseline wander and the T-wave 
interference.   

The low-pass filter is described by the formula: 
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and the high-pass one is given by: 
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After filtering, the signal is differentiated to provide 
the QRS slope information using the following formula: 

1
y( n ) [ 2x( n ) x( n 1) x( n 3 ) 2x( n 4 )]

8
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Then the signal is squared point by point making all 
data point positive and emphasizing the higher 
frequencies.  
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After squaring, the algorithm performs sliding 
window integration in order to obtain waveform feature 
information.  
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where N is the size of the sliding window and depends 
on the sampling rate. For a sampling rate of 200 
samples/sec the size of the window can be 30 samples. 

A temporal location of the QRS is marked from the 
rising edge of the integrated waveform. 

In the last step two thresholds are adjusted. The 
higher of the two thresholds identifies peaks of the 
signal. The lower threshold is used when no peak has 
been detected by the higher threshold in a certain time 
interval. In this case the algorithm has to search back in 
time for a lost peak. When a new peak is identified (as a 
local maximum – change of direction within a 
predefined time interval) then this peak is classified as a 
signal peak if it exceeds the high threshold (or the low 
threshold if we search back in time for a lost peak) or as 
a noise peak otherwise. In order to detect a QRS 
complex the integration waveform and the filtered 
signals are investigated and different values for the 
above thresholds are used. 

To be identified as a QRS complex, a peak must be 
recognized as a QRS in both integration and filtered 
waveform. 

 
The Architecture of the Implementation  
 

The architecture of the implementation is shown in 
figure 2 and consists of seven modules and one memory 
unit. The module on the left is the control unit which is 
responsible for the generation of the control signals and 
coordinates all calculations. Each one of the six 
modules in the middle is responsible for a different 
stage of the algorithm as described in the previous 
section. Each one of those modules read values from the 
memory, perform the necessary computations and store 
the new values back in memory. 
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Figure 2: An overview of the architecture. The control 
unit coordinates the rest of the modules which perform 
calculations and interfere with the memory unit. 
 

Even though the implementation of the algorithm in 
hardware seems a complicated task, a closer look at the 
algorithm reveals some similarities in the calculations 
performed by the first five stages since the filters, the 
differentiation and the integration units compute 



difference equations. The general formula of these 
stages is: 
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 Thus, those modules can be implemented based on 
a common model, which loads values from the memory, 
multiplies them with the appropriate factors, adds them, 
and stores the result back in memory.  

 
Since the implementation philosophy for all units is 

the same, the common architecture is shown in figure 3. 
 

 

 
Register Loader 

Control Unit  
Address Loader Resister 1 

Resister 2 

Resister 3 

Resister n 

 
 
 
 
Adder 

 
x 

 
y 

Memory 
address 

clock 

R_W 

out 

in 

Figure 3: The architecture of the stages. Values are 
loaded from memory, multiplied with proper factors, 
added and stored back in memory 

 
Without loss of generality we will describe the 

implementation of the low-pass filter. The low-pass 
filter is described by the formula: 

y(n)=2y(n-1)-y(n-2)+x(n)-2x(n-6)+x(n-12) 
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Figure 4: Register loader, registers and adder for the 
low-pass equation unit 
 

A memory unit is used which stores, in the first half, 
the values of x. The second half is used for the produced 
values of y. The control unit is responsible for the 
creation of the necessary control signals which enable 
the basic units of the filter and synchronize the 
calculations. For example when the terms 2y(n-1), -y(n-
2), x(n), -2x(n-6), and x(n-12) are available the control 
unit generates a control signal to enable the adder and 
produce y(n). The address loader is a complicated 
circuit which consists mainly from multiplexers and 
adders. It produces the addresses which store the values 
necessary to calculate y(n). For the low-pass filter these 

values are y(n-1), y(n-2), x(n), 2x(n-6), and x(n-12).  In 
a similar way the register loader consists of multiplexers 
and arithmetic operations circuits. Under the 
instructions of the control unit, the loader multiplies 
with the appropriate factors the values read from the 
memory and loads them to the registers. Finally an 
adder adds the values of the registers and sends y(n) to 
the memory. 

 
Table 1: Signals for the circuit of figure 4 

time value ld5…ld1 add 
t 2y(n-1) 00001 0 

t+1 y(n-2) 00010 0 
t+2 x(n) 00100 0 
t+3 2x(n-6) 01000 0 
t+4 x(n-12) 10000 0 
t+5  00000 1 

 
Let us select and present in more detail a subset of 

the whole circuit, the register loader, the registers and 
the adder. The architecture is shown in figure 4. The 
memory, under the supervision of the control unit, 
produces the required values which are the input for the 
circuit of figure 4. When one of these values is 
available, the control unit enables accordingly the ld 
signals. Suppose that the available value is y(n-1). Then 
the ld1 signal will be the only ld signal which will be 
set. Register 1 will load the value of y(n-1) multiplied 
by 2. When all registers have been loaded then the add 
signal will produce y(n). The whole synchronization 
mechanism is shown in table 1. 

 
Figure 5: Output of each stage. (a)  Original signal, (b) 
Output of bandpass (highpass and lowpass) filter, (c) 
Output of derivation, (d) Output of squaring, (e) Output 
of integration, (f) Output pulse.   



 
After the execution of the first five stages the stage 

of decision takes place. During this step, peaks are 
detected in the data generated by the previous stages. In 
this phase the computed values of the thresholds are 
taken into account in order to identify the QRS peak in 
each RR interval. The thresholds and the duration of the 
expected RR interval are dynamically adjusting with the 
shape of the signal. Once a peak is detected the system 
generates a pulse. 

The results of the implemented hardware system 
are presented in figure 5 where the output of each stage 
is shown for 1000 samples of the European ST-T 
database. 
 
System Evaluation 
 

The proposed hardware implementation achieves a 
speed up of 250% compared to a software 
implementation. The software implementation uses a 
conventional Risc microprocessor. Provided that the 
technology used for the hardware implementation is the 
same with the one used for the microprocessor we can 
safely claim that the clock frequency for both 
implementations may be the same. Consequently the 
performance in all implementations is measured in 
clock cycles. Measurements have been taken for various 
numbers of samples. In figure 6 the performance 
evaluation is shown for 1000, 5000, 10000, 20000 and 
30000 samples. 
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Figure 6: Performance evaluation of the implemented 
system for various numbers of samples. 
 

In figure 6, is clearly shown that the hardware 
implementation is faster. The speed-up factor is close to 
2.5 and gradually increases as the number of samples 
increases.  This augmentation of the speed-up factor is 
shown in figure 7. 
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Figure 7: The fluctuation of the speed-up factor 
according to the number of samples 
 
Conclusions and future work 

 
In this paper we propose a hardware 

implementation of the Pan and Tompkins QRS 
detection algorithm based on a Xilinx FPGA board, 
accelerating the performance by a factor of 
approximately 2.5 compared to the software approach. 

Our current research is focused on enhancing the 
performance of the presented architecture, by using 
pipelining techniques. Pipelining [21] is an 
implementation technique in which multiple tasks are 
overlapped in execution. The execution of each stage 
may not occur sequentially one after other but there may 
be an overlap in execution. In our current 
implementation every stage processes the entire sample 
and then can the next stage begin. However, the samples 
that have already been processed by a stage may be 
processed by the next without waiting all the samples to 
be processed by the first. 
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