
A generic platform for the SoC implementation of
grammar-based applications

Alexandros C. Dimopoulos, Christos Pavlatos, Panagiota Karanasou and George Papakonstantinou
National Technical University of Athens

Department of Electrical and Computer Engineering
Zografou 15773, Athens, Greece

Email: {alexdem, pavlatos, pkaran, papakon}@cslab.ece.ntua.gr

Abstract—In this paper a generic platform for the hardware
implementation of grammar-based applications is presented. The
proposed platform, given the specification of the application in the
formalism of Attribute Grammars, automatically produces the
necessary hardware modules for the syntactic and semantic anal-
ysis of input strings belonging to that grammar. The produced
implementation tackles with the recognition task of the input
string, using Earley’s parallel parsing algorithm. The attribute
evaluation makes usage of a stack-based methodology. The
hardware modules are described in Verilog Hardware Description
Language (Verilog HDL) and synthesized in a Xilinx Virtex-5
ML506 FPGA. Finally, two examples from the area of arithmetic
expression evaluation and from the question answering area are
given, for the illustration of the proposed system.

I. INTRODUCTION

Attribute grammars (AGs) were introduced by Knuth [1]
in 1968. The addition of attributes and semantic rules to
Context free grammars (CFG) augmented their expressional
capabilities, making them, by this way, a really useful
tool for a considerable number of applications. AGs [2]
have been extensively utilized in Artificial Intelligence
applications [3], [4], [5], structural pattern recognition [6],
compiler construction [7], text editing [8] e.t.c.. However, the
additional complexity imposed by the added characteristics,
dictates the need for hardware solutions of the whole
procedure (parsing and attribute evaluation) as an attractive
alternative to classical software solutions in order to speed-up
the execution time.
In this paper, a generic platform for hardware implementations
of grammar based applications is presented. The end-user
provides the target application described in AG - both syntax
and semantics - and the platform produces the appropriate
hardware modules for the recognition of any input string
belonging to the specific grammar, as well as the module
for the evaluation of its attributes. The recognition task of
the input string takes place on a hardware implementation
[9] of Earley’s parallel parsing algorithm [10], which is now
extended so as to allow the evaluation of attributes. Previous
attempts were using a general purpose processor, softcore
[11] or external [12], for the semantics evaluation. In this
paper, the semantics evaluation takes place in a separate
special purpose (for the specific application) module in the
same chip where the parsing lays (SoC). The output of the
produced system, after the evaluation of the semantics, may

be executed into another dedicated hardware module in the
same chip, as presented in the first example of Section IV.
Alternatively, the output code may be executed on an external
processor or even on a remote computer as presented in
the second example of Section IV. The high computational
cost of the parsing task, in conjunction with a possible large
amount of input sentences, to be processed simultaneously,
justify the hardware implementation of the grammar (syntax
and semantics).
The proposed architecture has been implemented in
synthesizable Verilog in the Xilinx ISE 9.1 [13] environment,
while the generated source has been simulated for validation,
synthesized and tested on a Xilinx Virtex-5 ML506 FPGA.
The system can be used in applications where a large amount
of input data must be processed simultaneously and extract
information. The extracted information can be statistics about
the preferences of clients, the profiling of the users, intelligent
extraction of keywords for web browsers etc.
The rest of the paper is organized as follows. In Section
II, the necessary theoretical background for understanding
the parsing algorithm as well as the Attribute Grammars is
presented. All the necessary extensions to the parser module,
which make attribute evaluation feasible, are introduced
in Section III. In Section IV, two examples from the area
of arithmetic expression evaluation and from the area of
question answering, are given for the illustration of the
proposed system. Finally, in Section V, we summarize the
proposed implementation and present future work.

II. THEORETICAL BACKGROUND

A Context Free Grammar [7] (CFG) is a quadruple G =
(N, T, R, S), where N is the set of non-terminal symbols, T
is the set of terminal symbols, R is the set of grammar rules
(a subset of N × (N ∪T)∗ written in the form A → α, where
A ∈ N and α ∈ (N ∪T)∗) and S (S ∈ N) is the start symbol
(the root of the grammar). We use capital letters A, B, C, . . . to
denote non terminal symbols, lowercases a, b, c, . . . to denote
terminal symbols and Greek lowercases α, β, γ, . . . for (N ∪
T)∗ strings, λ is the null string and V = N ∪ T is called
vocabulary. A → α means that α can derive from A after the
application of one or more rules. Let S → α, (α ∈ T ∗) be a
derivation in G. The corresponding derivation (parsing) tree is

an ordered tree with root S, leaves the terminal symbols in α,
and nodes the rules that are used for the derivation process.
The process of analyzing a string for syntactic correctness
is known as parsing. A parser is an algorithm that decides
whether or not a string a1a2a3 . . . an (of length n) can be
generated from a grammar G and simultaneously constructs
the derivation (or parse) tree.
An Attribute Grammar [2] is based upon a CFG. An AG is
a quadruple AG = (G, A, SR, d) where G is a CFG, A =
∪A(X) where A(X) is a finite set of attributes associated
with each symbol X ∈ V . Each attribute represents a specific
context-sensitive property of the corresponding symbol. The
notation X.a is used to indicate that attribute a is an element
of A(X). A(X) is partitioned into two disjoint sets; the set of
synthesized attributes AS(X) and the set of inherited attributes
AI(X). Synthesized attributes X.s are those whose values are
defined in terms of attributes at descendant nodes of node X
of the corresponding semantic tree. Inherited attributes X.i
are those whose values are defined in terms of attributes at
the parent and (possibly) the sibling nodes of node X of the
corresponding semantic tree. The start symbol does not have
inherited attributes. Each of the productions p ∈ R (p : X0 →
X1X2 . . . Xn) of the CFG is augmented by a set of semantic
rules SR(p) that define attributes in terms of other attributes of
terminals and on terminals appearing in the same production.
The way attributes will be evaluated depends both on their
dependencies to other attributes in the tree and also on the
way the tree is traversed. Finally d is a function that gives for
each attribute a its domain d (a). If we limit the computing
power to the one of S-attribute grammars [2] then we have
“action” grammars. Action grammar, in this paper, is defined
as a CFG, in which actions may be incorporated at the end of
the rules. These actions (semantics) decorate the parse tree at
the corresponding nodes. When the tree is traversed top-down,
the actions are executed from left to right, after the syntactic
analysis.

III. OVERVIEW OF OUR APPROACH

The proposed implementation follows the architecture
shown in Fig. 1, i.e. it is divided into three major components,
responsible for the parsing, the parse tree construction and
the production and execution of the corresponding actions.
The parser handles the recognition task and constructs the
parse table. When the parsing process is over, the parse
tree is constructed and afterwards, while being traversed, the
corresponding actions are send to the execution submodule.
This actions, executed by the submodule may lead into the
production of an intermediate code executed on an abstract
machine (e.g. SQL server, Java VM) or may be executed
on a dedicated hardware component, coexisting on the same
FPGA board with the rest of the modules. In example 1,
presented in Section IV, the dedicated hardware component
evaluates arithmetic operations, while in example 2, actions
are transformed into SQL queries to be executed on an SQL
server.

Fig. 1. Overview of our Approach

A. The Parsing Task

The parsing task may be reduced to the procedure of filling
a two dimension table (parsing table: pt ()). Chiang & Fu
[10] proved that the construction of the parsing table can be
parallelized with respect to the length of the input string n, by
computing at step k the cells pt(i, j) for which j − i = k ≥ 1.
Only the elements on or above the diagonal are used. In [9],
[12] a parallel architecture (see Fig. 2) has been presented
that uses n + 1 elements (P1, P2, . . . , Pn+1) to compute the
parse table in O(n) time where n is the input string length.
Every processing element is computing one cell pt(i, j) in each
execution time and the next execution time is used again to
compute the cell that belongs to the same column and is one
row higher pt(i-1, j). In addition one processing element is
required to control the whole process and one more to handle
the attribute evaluation process. The n elements that are used
for the parallel parsing are following the design presented in
[9] (see Fig. 3). After the end of each execution step k (tek),
the computation of one parsing processing element terminates.
At the next execution step this processing element should
transmit the cells that it has computed, to the next processing
(tck). Each processing element repeatedly calculates a cell,
checks if it should transmit some cells and then if it should
receive any.
More specifically, the parse table produced by the parser

Fig. 2. The parallel architecture for the construction of Parsing Table

Fig. 3. The architecture of Processing Elements

is filled starting from its most left column and continuing
to the right successively. For each entry of the parse table,
extra data (source state - SS) must be kept, in order to
keep track of the origin of each produced rule, to be used
by the next task of parse tree construction. In this way,
the hardware implementation [9] of Earley’s parallel parsing
algorithm, gives a speedup of 2 orders of magnitude compared
to conventional software approaches.

B. Constructing the Parse Tree

Based on the abovementioned parse table, the parse tree is
exported, using the SS data. Firstly, the root of the parse tree
is located and then successively the following node of the tree
is located, until the tree is fully constructed. The search of
the next element, is based on fields of the examined element
that correspond to the origin of each rule - where it was first
created or to the state from which it came from - so the parse
table is not parsed again, but only backtracking occurs. It is
noted that the parse tree is constructed top to bottom and from
right to left, as shown in Fig. 4.

C. Action Identification and Execution

The final scope - that of semantics evaluation - is carried
out after the parse tree is fully constructed. There is a rule-
to-rule correspondence between syntax and semantic rules.
Conventional approaches in the evaluation of AGs are based
on the construction of the parse tree that is after traversed
one or more times, depending on the form of the grammar,
in order to evaluate the attributes. In our approach, the parse
tree is traversed from bottom-up and from left to right and for
every node, the corresponding semantic rule is evaluated. The
main idea of the algorithm, is to first evaluate all the subnodes
of a node before evaluating the node itself. Furthermore,
for every semantic rule, no real operation is made at the
evaluation phase but a control signal - an action - is send to be
executed later. Therefore, every semantic rule is corresponded
to an action. In this way, after the construction of the parse
tree, a one-pass attribute evaluation that generates the actions,
is carried out by the action identification submodule. These
actions are then executed by the action execution submodule,

which uses a stack-based approach to cope with the necessary
operations. The abovementioned transformation from the AG
notation to Actions can easily be automated by the usage
of a preprocessor. The needed actions result following the
methodology described below:

• For each synthesized attribute, a stack is defined.
• As the tree is traversed, when the last symbol of a rule

is reached, the synthesized attributes of the left hand side
symbol (lhss) of the rule may be evaluated by unstacking
(pop up) the values of the corresponding attributes of
the right hand side symbols (rhss). The result, computed
based on the semantic rule, is then stored (pushed) into
the stack of the synthesized attribute referring to lhss.

• If a semantic rule has a simple transfer form, no action
is needed.

The computing power of the proposed system is the one of
S-attribute grammar [2]. Yacc [14] has the same computing
power, so we could say that the system proposed is a hardware
implementation of a Yacc metacompiler. Nevertheless, the
parser utilized in our system is much more powerful than the
one of Yacc. It is a non-deterministic CFG parser, finding all
ambiguous solutions.

IV. ILLUSTRATIVE EXAMPLES

In the case of the first illustrative example given below,
arithmetic expressions can be described through an AG with
the usage of synthesized attributes. The semantic rules have
been transformed into simple push and pop actions that are
executed on a separate module embedded into the same FPGA
board. In the second example, a Natural Language interface
is developped, to translate English sentences to SQL queries.
This application falls in the area of question-answering. The
semantic rules have been transformed into actions, that finally
construct SQL queries, send to be executed to an SQL server.

Fig. 4. Parse Tree Construction

A. Example 1

In a first approach to present the platform, an illustrative
example is given based on the AG Gop (see Table I), which
describes the basic arithmetic operations of addition and
multiplication between two or more operands. The produced
system can recognized input strings that describe arithmetic
operations and furthermore evaluate the final result, resembling
to a common (infix notation) calculator. According to our
methodology presented in the previous section, only one stack
is needed since only one synthesized attribute exist in the
grammar Gop. Furthermore, in the case of rules, where a
simple assignment is imposed by the semantics, no action
is needed. In contrary, all other semantic rules have been
transformed into simple push and pop actions.
Conventional approaches would recognize whether the input
string 35+3∗ (4+20) belongs to Gop, using the syntax rules.
On success, the parse tree would be produced (Fig. 5). At the
next stage, the parse tree would be traversed and each time a
node was traversed, semantic rules would be evaluated.
In our approach, the semantic rules have been transformed into
the actions shown in the 3rd column of Table I. For each node
of the tree, the corresponding action id is outputted. The last
submodule receives these simple actions and executes them.
In this way, the final result (the number 107) appears at the
output of our Soc. The actions produced by our system as well
as the stack for the input string 35+3∗(4+20) is summarized
in Table II. The 1st column of Table II refers to the numbered
nodes of the parse tree shown in Fig. 5.

B. Example 2

Natural Language (NL) processing is a very attractive
method of human-computer interaction and may be applied to
a considerable number of fields such as intelligent embedded

TABLE I
ARITHMETIC OPERATION GRAMMAR Gop

Syntax Rule Semantic Rule in Corresponding Actions

AG notation in Action Grammar notation

S → E Ss = Es [pop result]

E1 → T + E2 E1s = Ts + E2s [pop x] [pop y]

[evaluate x+y][push result]

E → T Es = Ts -

T → F ∗ T Ts = Fs ∗ Ts [pop x] [pop y]

[evaluate x*y][push result]

T → F Ts = Fs -

F → (E) Fs = Es -

F → N Fs = Ns -

N → DN Ns = 10 ∗ Ds + Ns [pop x] [pop y]

[evaluate 10y+x][push result]

N → D Ns = Ds -

D → 0 Ds = 0 [push 0]

.

D → 9 Ds = 9 [push 9]

TABLE II
ACTION EXECUTION Gop

Node Action Stack

1 push 3 3

2 push 5 3, 5

3 pop x; pop y; push 10y+x 35

4 push 3 35, 3

5 push 4 35, 3, 4

6 push 2 35, 3, 4, 2

7 push 0 35, 3, 4, 2, 0

8 pop x; pop y; push 10y+x 35, 3, 4, 20

9 pop x; pop y; push x+y 35, 3, 24

10 pop x; pop y; push x*y 35, 72

11 pop x; pop y; push x+y 107

12 pop result -

Fig. 5. Parse Tree for 35+3*(4+20)

systems, intelligent interfaces, learning systems, etc [15], [16].
It is clear that automatically extracting linguistic information
from a text can be an extremely powerful method for NL
processing systems.
In order to show how we can build a natural language inter-
face, using the system proposed, we have chosen a question-
answering example [17] from the area of airline flights. In
this example, the system can receive sentences belonging to
a subset of NL. When the syntactic recognition of the input
sentence is completed, using the created parse tree, the seman-
tics are evaluated and the FPGA sends SQL queries generated
to a data-management machine that has access to a data-

TABLE III
NATURAL LANGUAGE GRAMMAR GNL

Syntax Rules

PR → NP V P SB → OB

NP → QS W V P SB → OB P OB

NP → QS QF → A SET

NP → OB QF → E SET

QS → A SET OB → Object Names

QS → E SET SET → Class Names

V P → V P1 V P2 SP REL → Relation Phrases

V P → SP AT → Property Names

V P1 → IP V P1 NRL → Numerical Relations

V P2 → SP CNJ V P2 N → Numbers

IP → REL QF W W → Relative Pronouns

SP → REL SB A → Determiner “A”

SP → AT NRL N Each → Determiner “Each”

SB → QF CNJ → Conjuction Words

base in order to produce the final result (answer). The system
can be used in applications where a lot of input sentences
must be processed simultaneously and extract information. The
extracted information can be statistics about the preferences
of clients, the profiling of the users, intelligent extraction of
keywords for web browsers etc.
In Table III the syntax rules of the underlying AG GNL are
shown, which recognize questions concerning airline flights.
The full AG grammar can be found in [17], where a subset
of English accepted by the system, uses words belonging
to classes like: class names, object names, property names
e.t.c. The sentences of the subset of English are questions
concerning airline flights and the answer after the processing
of the intermediate code by the abstract data-management
machine is YES or NO. In that paper the intermediate code
was executed by an abstract toy-scale machine accessing
a simplified data base. On the contrary, in this paper the
intermediate code is SQL queries which can be processed by
any real-life server. An illustrative simple question is:

A FLIGHT DEPARTS FROM ATHENS?
This question can be syntactically analyzed into a noun

phrase consisting of a determiner and a common noun and

TABLE IV
CORRESPONDING ACTIONS FOR GNL

Syntax Rule Actions

PR → NP V P pop x; pop y; push conc(y,x,;)

QS → A SET pop x; pop y; push conc(y,x)

V P → SP

SP → REL SB pop x; pop y; push conc(y,x)

SB → OB

OB → Athens push ““ATH””

SET → F lights push “from Flights”

REL → Departs From push “where DepartsFrom=”

A → A push “select FlightNo”

Fig. 6. Parse Tree for NL example

a verb phrase consisting of a verb, a preposition and a proper
noun. The determiner corresponds to a quantifier, the common
noun to a class name, the verb and the preposition to a relation
and the proper noun to an object. The nouns and the verb will
be used as parameters by the commands that will be generated
by the determiner and syntactic structures.
Following the same course as in example 1, the semantic rules
are corresponded to simple actions and a stack is used. For the
question, “A FLIGHT DEPARTS FROM ATHENS?” the parse
tree is presented in Fig. 6. For the same input string, in Table
IV the transformed semantic rules are presented, only for the
necessary nodes, where conc (par1, . . . , parn), which stands
for the concatenation of the contains of par1, . . ., parn. Given
a database that consists of a Flights Relation: Flights(FlightNo
id, DepartsFrom char[3], ArrivesAt char[3], Airline char[5],
. . .), the generated system produces the SQL query: Select
FlightNo From Flights Where DepartsFrom=“ATH”;, as shown
in Table V, that can be executed on an SQL server.
More complex questions can also be handled by the proposed

TABLE V
ACTION OUTPUT GNL

Node Action Stack

1 push “select FlightNo” “select FlightNo”

2 push “from Flights” “select FlightNo”,

“from Flights”

3 pop x; pop y; push conc(y,x) “select FlightNo from Flights”

4 push “where DepartsFrom=” “select FlightNo from Flights”,

“where DepartsFrom=”

5 push ““ATH”” “select FlightNo from Flights”,

“where DepartsFrom=”,

““ATH””

6 pop x; pop y; push conc(y,x) “select FlightNo from Flights”,

“where DepartsFrom=“ATH””

7 pop x; pop y; push conc(y,x,;) “select FlightNo

from Flights

where DepartsFrom=“ATH”;”

architecture, producing the corresponding SQL code, susch as:

• AIRLINE-X FLIES FROM ATHENS TO NEW-YORK?
• EACH FLIGHT WHICH IS CONNECTED TO A

FLIGHT WHICH BELONGS TO AIRLINE-X DE-
PARTS FROM A CITY WHICH IS LINKED TO EACH
CITY WHICH BELONGS TO GREECE?

V. CONCLUSION AND FUTURE WORK

This work is a part of a project1 for developing a
platform (based on AGs) in order to automatically generate
special purpose embedded systems. In this paper a generic
platform for the hardware implementation of grammar-based
applications is presented. The proposed platform, given
the specification of the application in the formalism of
Attribute Grammar, automatically produces the necessary
hardware modules for the syntactic and semantic analysis
of input strings belonging to that grammar. The produced
implementation tackles with the recognition task of the input
string using a hardware implementation [9] of Earley’s parallel
parsing algorithm, giving a speedup of 2 orders of magnitudes
compared to conventional software approaches. The attribute
evaluation makes usage of a stack-based methodology.
Our future work remains focused in implementing the
proposed architecture using a faster parser, that is based
exclusively on combinatorial circuits, i.e. the one proposed in
[18]. A drastic further increase of the speed-up is expected
using this parser. Furthermore, the prospective of extending
the platform so as to tackle with inherited attributes and
multi-pass AGs [2] and the automatic matching of semantic
rules to action is a high priority.

REFERENCES

[1] D. E. Knuth, “Semantics of context free languages,” Math. Syst.Theory,
vol. 2, pp. 127–145, 1971.

[2] J. Paakki, “Attribute grammar paradigms a high-level methodology in
language implementation,” ACM Comput. Surv., vol. 27, no. 2, pp. 196–
255, 1995.

[3] G. Papakonstantinou and J. Kontos, “Knowledge representation with
attribute grammars,” The Computer Journal, vol. 29, 1986.

[4] G. Papakonstantinou, C. Moraitis, and T. Panayiotopoulos, “An attribute
grammar interpreter as a knowledge engineering tool,” Applied Informat-
ics, vol. 9, pp. 382–388, 1986.

[5] I. Panagopoulos, C. Pavlatos, and G. Papakonstantinou, “An embedded
system for artificial intelligence applications,” International Journal of
Computational Intelligence, 2004.

[6] K. Fu, Syntactic Pattern recognition and Applications. Prentice-Hall,
1982.

[7] A. Aho, R. Sethi, and J. Ullman, Compilers - Principles, Techniques
and Tools. Reading, MA: MADDISON-WESLEY, 1986.

[8] A. Demers, T. Reps, and T. Teitelbaum, “Incremental evaluation for
attribute grammars with application to syntax-directed editors,” in Conf.
Rec. 8th Annu. ACM symp. Principles Programming Languages, 1981,
pp. 415 – 418.

[9] C. Pavlatos, I. Panagopoulos, and G. Papakonstantinou, “A pro-
grammable pipelined coprocessor for parsing applications,” Workshop
on Application Specific Processors (WASP) CODES., September 2004.

1This work has been funded by the project PENED 2003.This project is
part of the OPERATIONAL PROGRAMME ”COMPETITIVENESS” and is
co-funded by the European Social Fund (75%) and National Resources (25%).

[10] Y. T. Chiang and K.-S. Fu, “Parallel parsing algorithms and VLSI
implementations for syntactic pattern recognition.” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 6, pp. 302–314, 1984.

[11] C. Pavlatos, A. Dimopoulos, and G. Papakonstantinou, “An embedded
system for the electrocardiogram recognition,” EMBEC’05, November
2005.

[12] C. Pavlatos, A.Dimopoulos, and G. Papakonstantinou, “An intelligent
embedded system for control applications,” in Workshop on Modeling
and Control of Complex Systems, Cyprus, 2005.

[13] Xilinx Official WebSite http://www.xilinx.com.
[14] S. C. Johnson, Yaccyet another compiler compiler, ser. Computing Sci-

ence Technical Report 32. Murray Hill, N.J.: AT&T Bell Laboratories,
1975.

[15] Y. Li, H. Yang, and H. V. Jagadish, “NaLIX: an interactive natural
language interface for querying xml,” in Proceedings of the 2005 ACM
SIGMOD international conference on Management of data, Baltimore,
Maryland, 2005, pp. 900–902.

[16] A. Yates, O. Etzioni, and D. Weld, “A reliable natural language inter-
face to household appliance,” in Proceedings of the 8th international
conference on Intelligent user interfaces, 2003, pp. 189 – 196.

[17] C. Pavlatos, A.Dimopoulos, and G. Papakonstantinou, “Hardware natural
language interface,” in 4th IFIP Conference on Artificial Intelligence
Applications & Innovations (AIAI), Athens, Greece, September 2007.

[18] C. Pavlatos, A. Dimopoulos, A. Koulouris, T. Andronikos, I. Panagopou-
los, and G. Papakonstantinou, “Efficient reconfigurable embedded
parsers,” Computer Languages, Systems & Structures, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

