
TELIOS: A Tool for the Automatic Generation
of Logic Programming Machines

Alexandros C. Dimopoulos and Christos Pavlatos and George Papakonstantinou

Abstract In this paper the tool TELIOS is presented, for the automatic generation
of a hardware machine, corresponding to a given logic program. The machine is
implemented using an FPGA, where a corresponding inference machine, in appli-
cation specific hardware, is created on the FPGA, based on a BNF parser, to carry
out the inference mechanism. The unification mechanism is based on actions em-
bedded between the non-terminal symbols and implemented using special modules
on the FPGA.

1 Introduction

Knowledge engineering approaches have extensively been used in many application
domains such as medicine, scheduling and planning, control, artificial intelligence
[13] etc. The low power requirements, small dimensions, and real-time limitations,
which are usually specified in such applications, impose the need of designing spe-
cialized embedded systems for their implementation [14]. Therefore, the possibility
of exploiting knowledge engineering approaches in embedded systems, is of crucial
importance.
The first machine introduced for the implementation of logic programs (PROLOG)
was the Warren Abstract Machine (WAM) [3]. The 5 th generation computing era
was targeted towards this direction [2]. The cost for the implementation of such
systems, along with their size, prevented their use in small scale applications in em-
bedded system environments [14].
The effort of designing hardware capable of supporting the declarative programming
model, for logic derivations, can now lead to intelligent embedded designs which

Alexandros C. Dimopoulos, Christos Pavlatos,George Papakonstantinou
National Technical University of Athens, School of Electrical and Computer Engineering,
Iroon Polytechneiou, Zografou 15773, Athens, Greece,
e-mail: {alexdem,pavlatos,papakon}@cslab.ece.ntua.gr

1

2 Alexandros C. Dimopoulos and Christos Pavlatos and George Papakonstantinou

Parser Parse
Table

Parse Tree
Constructor

Action
Identification

Parse Tree

Action
id

Action
Execution

Final

Result
FPGA

TransformationLogic
Program

Action
 Grammar

Input string

Fig. 1 Overview of our approach

are considerably more efficient compared to the traditional ones. Some efforts have
been done in the past, towards this direction [5], [12], [7] . In [5] a hardware parser
was presented based on the CYK parsing algorithm. In [12] another hardware parser
was presented based on the Earley’s parallel algorithm [8]. Both parsers have been
implemented using FPGAs. In [7] a similar approach to the one proposed here was
presented. Nevertheless, the unification mechanism was implemented using soft-
core general purpose on chip processors, hence reducing drastically the speed up
obtained by using the hardware parser.
In this paper the tool TELIOS (Tool for the automatic gEneration of LogIc prO-
gramming machineS) is presented. The user describes his logic program in a subset
of PROLOG and the systems generates the necessary code to be downloaded to an
FPGA (Field Programmable Gate Array). This FPGA is the machine for this spe-
cific logic program. The proposed implementation follows the architecture shown in
Fig. 1. The given logic program can be transformed to an equivalent grammar, which
feeds the proposed architecture, in order the different components to be constructed.
The contribution of this paper is:

1. The modification of the hardware parser of [12], in order to be used for logic
programming applications. It is noted that the parser of [12] is two orders of
magnitude faster than the one used in [7].

2. The (automatic) mapping of the unification mechanism, to actions, easily imple-
mentable in FPGAs.
To the best of the authors knowledge, this is the first effort to implement logic
programs on FPGAs, without the use of an external real processor or a softcore
one on the same chip.

2 Theoretical Background

Attribute Grammars (AG) [9] have been extensively used for logic programming
applications [11], [6], [10]. The basic concepts for transforming a logic program to
an equivalent AG are the following: Every inference rule in the initial logic program
can be transformed to an equivalent syntax rule consisting solely of non-terminal
symbols. Obviously, parsing is degenerate since there are no terminal symbols. For
every variable existing in the initial predicates, two attributes are attached to the
corresponding node of the syntax tree, one synthesized and one inherited. Those at-

TELIOS: A Tool for the Automatic Generation of Logic Programming Machines 3

tributes assist in the unification process of the inference engine. For more details the
user is referred to [11], [10]. The computing power required for the transformation
of logic programs to AGs is the one of L-attributed AGs [9]. In these grammars the
attributes can be evaluated traversing the parse tree from left to right in one pass.
In this paper it is shown that L-attributed AGs are equivalent to “action” grammars,
which are introduced in this paper, due to their easy implementation in hardware.
Hence, we can transform a logic program to an equivalent action grammar.
The Action Grammars, are defined in this paper as BNF grammars, augmented with
“actions”. Actions are routines which are executed before and after the recogni-
tion of an input substring corresponding to a non-terminal. In the rule: < NT >::=
. . . [Ai] < NTi > .. . < NTj > [Aj], the actions to be taken are the execution of the
routine Ai before recognizing the non-terminal NTi and the execution of the routine
Aj after the recognition of the non-terminal NT j. The execution of Ai and A j takes
place after the generation of all possible parse trees. In the case of Earley’s algo-
rithm this is done in parallel, so that at the end of the parsing process all possible
parse trees are available.
As it was stated before, it will be shown here that action grammars are equivalent
to L-attributed grammars. For this purpose, some rules must be applied: 1) For each
attribute (synthesized or inherited) a stack is defined, having the same name as the
attribute. 2) At the end of each rule, unstacking of the synthesized attributes, of the
descendant (children nodes) of the non-terminal at the left hand side of the rule
(parent node), is done. These synthesized attributes are at the top of the stack. The
synthesized attribute of the parent node is calculated according to the corresponding
semantic rule and is pushed to the appropriate stack as shown in Fig. 2a. In this way,
it is sure that at the top of the stack, the synthesized attributes of the children nodes
of the parent (up to the corresponding child) are placed in sequence. 3) Regarding
the inherited attributes: a) A push is done at the corresponding stack of the inher-
ited attribute, the first time it is evaluated (produced). A pop is done at the time the
inherited attribute is needed (consumed) as in Fig. 2b. b) If in a rule an inherited
attribute is used in more than one children non-terminals (as in Fig. 2b), then the
same number of pushes of that attribute should be done. c) If a value transfer se-
mantic rule (for the same attribute) is needed in the AG, then no action is required
for inherited and synthesized attributes (as in Fig. 2b). In Fig. 2, i is an inherited
attribute, s a synthesized, xi auxiliary (temporary) variables and the arrows indicate
attribute dependencies.
The rules described above, will be further clarified with an example which follows.

Fig. 2 a) Synthesized attribute example b) Inherited attribute example

4 Alexandros C. Dimopoulos and Christos Pavlatos and George Papakonstantinou

3 An illustrative example

In order to clarify the aforementioned transformation, we demonstrate a toy-scale
example of a logic program which is transformed to its action grammar equivalent
one. Consider that we have the knowledge base (logic program) illustrated in Ta-
ble 1 (First Column) and we want to ask the question “p is successor of whom?”
i.e. Successor(p,?). The syntax rules, which form the equivalent action grammar
evaluator, are illustrated in Table 1 (Second Column) along with the definition of
the actions. The equivalent action grammar does not contain any terminal symbols,
therefore every fact P(x,y) is transformed to a syntactic rule of the form P → d,
where d is a dummy symbol that is also used for the representation of the empty
input string. The meta-variable flag arises from the transformation of the logic pro-
gram to the equivalent AG. Its value is used by the attribute evaluator to discard
useless subtrees, when it is equal to zero.
It is noted that we have four attributes, two for the two parameters of each predi-
cate, and two (one inherited and one synthesized) for each parameter, denoted by
Pqr. Pqr stands for parameter q of the predicates (q ∈ {1,2} in our example) and r ∈
{i,s} where i means inherited and s synthesized attribute. Hence, in our example we
have the attributes P1i, P2i, P1s and P2s. For each attribute a stack is kept i.e. stack1i,

Table 1 An AG equivalent representation of the knowledge based of the “successor problem”

Informal Definition of the Knowledge Base Equivalent Action Grammar
1. Goal(X,Y)← Successor(X,Y) < Goal > ::= [A1] < successor > [A2]$
2. Successor(X,Y)← Parent(Z,X) and < successor > ::= [A3] < parent > [A4]

Successor(Z,Y) < successor >[A5]$
3. Successor(X,Y)← Parent(Y,X) < successor > ::= [A6] < parent > [A7] $
4. Parent(j,b) < parent >::= d [A8] $
5. Parent(j,l) < parent >::= d [A9] $
6. Parent (b,a) < parent >::= d [A10] $
7. Parent (b,p) < parent >::= d [A11] $
[A1]→ no action
[A2]→ no action
[A3]→ tmp1 = pop (stack1i);push(stack2i ,tmp1);push (stack1i ,nil)
[A4]→ tmp1 = pop (stack1s);push(stack1i ,tmp1);
[A5]→ tmp1=pop(stack2s); tmp2=pop(stack2s);tmp3=pop(stack1s);push(stack2s ,tmp1); push(stack1s ,tmp2);
[A6]→ tmp1 = pop (stack2i); tmp2 = pop (stack1i); push (stack1i , tmp1); push (stack2i , tmp2);
[A7]→ tmp1 = pop (stack2s); tmp2 = pop (stack1s); push (stack1s , tmp1); push (stack2s , tmp2);
[A8]→ tmp = pop (stack1i); if ((tmp != nil) and (tmp != “j”)) then flag =0 else push (stack1s , “j”);

tmp = pop (stack2i); if ((tmp != nil) and (tmp != “b”)) then flag =0 else push (stack2s , “b”) ;
[A9]→ tmp = pop (stack1i); if ((tmp != nil) and (tmp != “j”)) then flag =0 else push (stack1s , “j”) ;

tmp = pop (stack2i); if ((tmp != nil) and (tmp != “l”)) then flag =0 else push (stack2s , “l”) ;
[A10]→ tmp = pop (stack1i); if ((tmp != nil) and (tmp != “b”)) then flag =0 else push (stack1s , “b”) ;

tmp = pop (stack2i); if ((tmp != nil) and (tmp != “a”)) then flag =0 else push (stack2s , “a”) ;
[A11]→ tmp = pop (stack1i); if ((tmp != nil) and (tmp != “b”)) then flag =0 else push (stack1s , “b”) ;

tmp = pop (stack2i); if ((tmp != nil) and (tmp != “p”)) then flag =0 else push (stack2s , “p”) ;
Goal (p,x) < Goal > ::= [A0] $
[A0]→ push (stack1i , p);push (stack2i , nil);

TELIOS: A Tool for the Automatic Generation of Logic Programming Machines 5

Fig. 3 Parse trees for the
“successor” example leading
to solutions (Note that tree
traversal is top-bottom, left to
right)

7

116

1

20

3

11

4

86

7

5

2

1

0

stack2i, stack1s and stack2s, respectively.
The question asked has two solutions, which are “j” and “b”. The corresponding
parse tree, decorated with the actions are illustrated in Fig. 3. A tracing of the exe-
cution of the actions (A0, A1, A3, A11, A4, A6, A8, A7, A5, A2 and A0, A1, A6, A11,
A7, A2 for the two parse trees) will leave at the top of the stack stack2s the values
“j”, “b” respectively. The predicate names have been abbreviated.

4 Implementation

Chiang & Fu [4] parallelized Early’s parsing algorithm [8], introducing a new oper-
ator⊗ and proposed a new architecture which requires n∗(n+1)

2 processing elements
(PEs) for computing the parse table. A new combination circuit was proposed in
[12] for the implementation of the ⊗ operator. In this paper a modification of the
parsing algorithm of [12] has been done in order to compute the elements of the
parse table PT by the use of only n processing elements that each one handled the
cells belonging to the same column of the PT.
It is obvious that since parsing is top-down, when recursion occurs and no input
string is used (the empty string is the input string), we may have infinite creation
of dotted recursion rule in the boxes. Hence, we have to predefine the maximum re-
cursion depth as well as the maximum number of the input characters (d characters)
in the input string, as installation parameters. The unification mechanism has been
implemented through actions. The parse trees are constructed from the information
provided by the parser. Actions are identified in the Action Identification module
and executed in the Action Execution module (Fig. 1).
The system TELIOS has been implemented in synthesizable Verilog in the XILINX
ISE 8.2 [1] environment while the generated source has been simulated for valida-
tion, synthesized and tested on a Xilinx SPARTAN 3E FPGA. Furthermore, it has
been tested with hardware examples we could find in the bibliography and in all
cases our system runs faster. In the case of the well-documented “Wumpus World
Game” and of finding paths in a directed acyclic graph [7], our system was two
orders of magnitude faster than the one of [7] required.

6 Alexandros C. Dimopoulos and Christos Pavlatos and George Papakonstantinou

5 Conclusion and Future Work

The system1 is very useful in cases where rapid development of small scale intelli-
gent embedded hardware has to be used in special purpose applications, locally in
dangerous areas, in robotics, in intelligent networks of sensors e.t.c.. The system in
its present form accepts a subset of PROLOG e.g. only variables and constants as
parameters of the predicates. Nevertheless, since we have shown the equivalence of
L-attributed grammars with action grammars and L-attributed grammars can cover
many other characteristics of PROLOG [10] (e.g. functors), it is straightforward
to extend our system. Future work aims at: 1) Combining the modules of parsing
and action execution in one module so that parsing will be completely semantically
driven. This will solve the recursion problem in a more efficient way. 2) Extending
the power of the grammar from L-attributed to many passes ones. 3) Applying the
tool in medical applications. 4) Extending the PROLOG subset used in this paper.

References

1. Xilinx official website. http://www.xilinx.com
2. Communications of the ACM 26(9) (1983)
3. Ait-Kaci, H.: Warren’s abstract machine : a tutorial reconstruction. MIT Press (1991)
4. Chiang, Y.T., Fu, K.S.: Parallel parsing algorithms and VLSI implementations for syntactic

pattern recognition. IEEE Trans. on PAMI 6, 302–314 (1984)
5. Ciressan, C., Sanchez, E., Rajman, M., Chappelier, J.: An fpga-based coprocessor for the pars-

ing of context-free grammars. In: FCCM ’00: Proceedings of the 2000 IEEE Symposium on
Field-Programmable Custom Computing Machines, p. 236. IEEE Computer Society, Wash-
ington, DC, USA (2000)

6. Deransart, P., Lorho, B., Maluszynski, J. (eds.): Programming Language Implementation and
Logic Programming, 1st International Workshop PLILP’88, Orléans, France, May 16-18,
1988, Proceedings, Lecture Notes in Computer Science, vol. 348. Springer (1989)

7. Dimopoulos, A., Pavlatos, C., Panagopoulos, I., Papakonstantinou, G.: An efficient hardware
implementation for AI applications. Lecture Notes in Computer Science 3955, 35–45 (2006)

8. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2), 94–102 (1970)
9. Paakki, J.: Attribute grammar paradigms a high-level methodology in language implementa-

tion. ACM Comput. Surv. 27(2), 196–255 (1995)
10. Panayiotopoulos, T., Papakonstantinou, G., Stamatopoulos, G.: Ai-debot paper. Angewandte

Informatik 88(5) (1988)
11. Papakonstantinou, G., Moraitis, C., Panayiotopoulos, T.: An attribute grammar interpreter as

a knowledge engineering tool. Angew. Inf. 28(9), 382–388 (1986)
12. Pavlatos, C., Dimopoulos, A.C., Koulouris, A., Andronikos, T., Panagopoulos, I., Papakon-

stantinou, G.: Efficient reconfigurable embedded parsers. Computer Languages, Systems &
Structures 35(2), 196 – 215 (2009). DOI 10.1016/j.cl.2007.08.001

13. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edition edn. Prentice-
Hall, Englewood Cliffs, NJ (2003)

14. Vahid, F., Givargis, T.: Embedded System Design: A Unified Hardware/Software Introduction.
WILEY (2002)

1 This work has been funded by the project PENED 2003. This project is part of the OPERA-
TIONAL PROGRAMME ”COMPETITIVENESS” and is co-funded by the European Social Fund
(80%) and National Resources (20%).

